Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ....
PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)
Dễ thấy cái ngoặc to >0. Do đó x = y.
Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)
Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D
Bài 2:
a)Ta có: \({\left( {x + 2y} \right)^2} \le \left( {1 + 1} \right)\left( {{x^2} + 4{y^2}} \right) \Rightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \sqrt {\dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}} \Leftrightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)Mặt khác ta cũng có:
\( \dfrac{{{x^2} + 2xy + 4{y^2}}}{3} = \dfrac{{3{{\left( {x + 2y} \right)}^2} + {{\left( {x - 2y} \right)}^2}}}{{12}} \ge \dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}\\ \Rightarrow \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)
Từ đó suy ra: \(\sqrt {\dfrac{{{x^2} + 4{y^2}}}{2}} + \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \left| {x + 2y} \right| \ge x + 2y \)
Dấu bằng xảy ra khi và chỉ khi \(x=2y\ge0\)
Thay vào phương trình còn lại ta thu được:
\({x^4} - {x^3} + 3{x^2} - 2x - 1 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 3x + 1} \right) = 0 \Leftrightarrow x = 1 \Rightarrow y = \dfrac{1}{2} \)
Vậy nghiệm của hệ phương trình là: \(\left( {1;\dfrac{1}{2}} \right) \)
\(\boxed{Nguyễn Thành Trương}\)
Bài 1: a liên hợp là ra mà nhỉ?
a) ĐK: \(x>-3\)
Mặt khác \(PT\Leftrightarrow\sqrt{\frac{1}{x+3}}-2+\sqrt{\frac{5}{x+4}}-2=0\)
\(\Leftrightarrow\frac{\frac{1}{x+3}-4}{\sqrt{\frac{1}{x+3}}+2}+\frac{\frac{5}{x+4}-4}{\sqrt{\frac{5}{x+4}}+2}=0\)
\(\Leftrightarrow\frac{-\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\) (quy đồng cái tử lên thôi)
\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{-1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right]=0\)
Cái ngoặc to nhìn liếc qua cũng thấy nó < 0.
Do đó \(x=-\frac{11}{4}\)
P/s: Về cơ bản hướng làm là vậy, khi là sẽ có thể có những sai sót, do em bị hư máy tính cầm tay:v. Đang rất GP đây này@@
\(\text{~tth~}\) |
b,ĐK:\(-3\le x\le\frac{3}{2}\)
\(PT\Leftrightarrow x-1+4\left(\sqrt{x+3}-2\right)+2\left(\sqrt{3-2x}-1\right)=0\)
\(\Leftrightarrow x-1+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}+\frac{2\left(2-2x\right)}{\sqrt{3-2x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)
Với \(x\ge-3\) \(\Rightarrow\frac{4}{\sqrt{x+3}+2}>0\) và \(3-2x\le9\Rightarrow-\frac{4}{\sqrt{3-2x}+1}\ge-1\)
\(\Rightarrow1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)(tm)
c,Đk: \(x\ge2,y\ge3,z\ge5\)
pt <=> \(x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\)
<=> \(\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)
<=>\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=\)0
=>\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)(t/m)
d, \(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\left(đk:x,y,z\ge\frac{1}{4}\right)\)
<=> \(4x+4y+4z=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
<=> \(\left(4x-1\right)-2\sqrt{4x-1}+1+\left(4y-1\right)-2\sqrt{4y-1}+1+\left(4z-1\right)-2\sqrt{4z-1}+1=0\)
<=>\(\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=\frac{1}{2}\end{matrix}\right.\)(tm)
c) Đặt \(a=\sqrt{x-4},b=\sqrt{y-4}\)với \(a,b\ge0\)thì pt đã cho trở thành:
\(2\left(a^2+4\right)b+2\left(b^2+4\right)a=\left(a^2+4\right)\left(b^2+4\right)\). chia 2 vế cho \(\left(a^2+4\right)\left(b^2+4\right)\)thì pt trở thành :
\(\frac{2b}{b^2+4}+\frac{2a}{a^2+4}=1\). Để ý rằng a=0 hoặc b=0 không thỏa mãn pt.
Xét \(a,b>0\). Theo BĐT AM-GM ta có: \(b^2+4\ge2\sqrt{4b^2}=4b,a^2+4\ge4a\)
\(\Rightarrow VT\le\frac{2a}{4a}+\frac{2b}{4b}=1\), dấu đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a^2=4\\b^2=4\end{cases}\Leftrightarrow a=b=2\Leftrightarrow x=y=8}\)
Vậy x=8,y=8 là nghiệm của pt
Đề đúng không thế.
\(y-3\sqrt{4y^2-4y+5}\) hay \(6-3\sqrt{4y^2-4y+5}\) thế