Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
ĐKXĐ : \(\left\{{}\begin{matrix}2x-1>0\\y+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>-2\end{matrix}\right.\)
PT ( I ) \(\Leftrightarrow\left(\sqrt{\dfrac{2x-1}{y+2}}+\sqrt{\dfrac{y+2}{2x-1}}\right)^2=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}+2\sqrt{\left(\dfrac{2x-1}{y+2}\right)\left(\dfrac{y+2}{2x-1}\right)}=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}=2\)
Từ PT ( II ) ta được : \(x=12-y\)
- Thế x vào PT trên ta được : \(\dfrac{2\left(12-y\right)}{y+2}+\dfrac{y+2}{2\left(12-y\right)}=2\)
\(\Leftrightarrow4\left(y-12\right)^2+\left(y+2\right)^2=4\left(12-y\right)\left(y+2\right)\)
\(\Leftrightarrow4\left(y^2-24y+144\right)+y^2+4y+4=4\left(12y+24-y^2-2y\right)\)
\(\Leftrightarrow4y^2-96y+576+y^2+4y+4-40y-96+4y^2=0\)
\(\Leftrightarrow9y^2-132y+484=0\)
\(\Leftrightarrow y=\dfrac{22}{3}\left(TM\right)\)
- Thay lại vào PT ta được : \(x=\dfrac{14}{3}\)
Vậy phương trình có nghiệm là \(S=\left\{\left(\dfrac{22}{3};\dfrac{14}{3}\right);\left(\dfrac{14}{3};\dfrac{22}{3}\right)\right\}\)
\(\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x+6}{x-1}+\dfrac{3y+14}{y+3}=18\end{matrix}\right.\left(x\ne1;y\ne-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2x-2+8}{x-1}+\dfrac{3y+9+5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{2\left(x-1\right)}{x-1}+\dfrac{8}{x-1}+\dfrac{3\left(y+3\right)}{y+3}+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\2+\dfrac{8}{x-1}+3+\dfrac{5}{y+3}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x-1}+\dfrac{7}{y+3}=19\\\dfrac{8}{x-1}+\dfrac{5}{y+3}=13\end{matrix}\right.\) (I)
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{x-1}\\v=\dfrac{1}{y+3}\end{matrix}\right.\)
Hệ (I) trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7v=19\\8u+5v=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}24u+14v=38\\24u+15v=39\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u+7=19\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12u=12\\v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=1\end{matrix}\right.\)
Trả ẩn phụ:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=1\\\dfrac{1}{y+3}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y+3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\left(tm\right)\)
Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2)
⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x+6x−1+3y+14y+3=18(x≠1;y≠−3){12�−1+7�+3=192�+6�−1+3�+14�+3=18(�≠1;�≠−3)
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192x−2+8x−1+3y+9+5y+3=18⇔{12�−1+7�+3=192�−2+8�−1+3�+9+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192(x−1)x−1+8x−1+3(y+3)y+3+5y+3=18⇔{12�−1+7�+3=192(�−1)�−1+8�−1+3(�+3)�+3+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=192+8x−1+3+5y+3=18⇔{12�−1+7�+3=192+8�−1+3+5�+3=18
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩12x−1+7y+3=198x−1+5y+3=13⇔{12�−1+7�+3=198�−1+5�+3=13 (I)
Đặt: ⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩u=1x−1v=1y+3{�=1�−1�=1�+3
Hệ (I) trở thành:
⇔{12u+7v=198u+5v=13⇔{12�+7�=198�+5�=13
⇔{24u+14v=3824u+15v=39⇔{24�+14�=3824�+15�=39
⇔{12u+7=19v=1⇔{12�+7=19�=1
⇔{12u=12v=1⇔{12�=12�=1
⇔{u=1v=1⇔{�=1�=1
Trả ẩn phụ:
⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩1x−1=11y+3=1⇔{1�−1=11�+3=1
⇔{x−1=1y+3=1⇔{�−1=1�+3=1
⇔{x=2y=−2(tm)⇔{�=2�=−2(��)
Vậy hệ pt có 1 cặp nghiệm duy nhất là: (2;-2)
\(PT\Leftrightarrow0=5\Leftrightarrow x\in\varnothing\)
\(Đk:x\ge2\\ PT\Leftrightarrow\dfrac{10\sqrt{x-2}-\sqrt{x-2}+1}{2}=6\sqrt{x-2}\\ \Leftrightarrow9\sqrt{x-2}+1=12\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=\dfrac{1}{3}\Leftrightarrow x-2=\dfrac{1}{9}\\ \Leftrightarrow x=\dfrac{19}{9}\left(tm\right)\)
\(ĐK:x\ne\pm1\)
\(\Rightarrow\dfrac{2}{x-1}+\dfrac{5}{\left(x-1\right)\left(x+1\right)}=1\)
\(\Leftrightarrow\dfrac{2\left(x+1\right)+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow2\left(x+1\right)+5=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x+2+5=x^2-1\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\) (tm)
Đặt \(\dfrac{1}{y-1}=a\), hpt tở thành
\(\left\{{}\begin{matrix}\dfrac{5}{x+1}+a=10\\\dfrac{1}{x-2}+3a=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15}{x+1}+3a=30\left(1\right)\\\dfrac{1}{x-1}+3a=18\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\), ta được:
\(\dfrac{15}{x+1}-\dfrac{1}{x-1}=12\\ \Leftrightarrow\dfrac{15x-15-x-1}{\left(x-1\right)\left(x+1\right)}=12\\ \Leftrightarrow12x^2-12=14x-16\\ \Leftrightarrow12x^2-14x+4=0\\ \Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Với \(x=\dfrac{1}{2}\Leftrightarrow\dfrac{10}{3}+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{10y-7}{3\left(y-1\right)}=10\)
\(\Leftrightarrow30y-30=10y-7\Leftrightarrow y=\dfrac{23}{20}\)
Với \(x=\dfrac{2}{3}\Leftrightarrow3+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{1}{y-1}=7\Leftrightarrow7y-7=1\Leftrightarrow y=\dfrac{8}{7}\)
Vậy \(\left(x;y\right)=\left\{\left(\dfrac{1}{2};\dfrac{23}{20}\right);\left(\dfrac{2}{3};\dfrac{8}{7}\right)\right\}\)
\(\Leftrightarrow12\left(x+1\right)-8\left(x-1\right)=x^2-1\)
\(\Leftrightarrow x^2-1=12x+12-8x+8\)
\(\Leftrightarrow x^2-1=4x+20\)
\(\Leftrightarrow x^2-4x-21=0\)
=>(x-7)(x+3)=0
=>x=7(nhận) hoặc x=-3(nhận)