\(7x^2-5x+1\)= 8 
Mình cần gấp l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

3 tháng 9 2020

\(ĐK:x\ge-\frac{3}{2}\)

Ta có:

\(x^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{\left(x^2+x+2\right)\left(2x+3\right)}\)

Đặt \(\sqrt{x^2+x+2}=a;\sqrt{2x+3}=b\)

Khi đó: \(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\sqrt{x^2+x+2}=\sqrt{2x+3}\left(hoac\right)\sqrt{x^2+x+2}=2\sqrt{2x+3}\)

Với \(\sqrt{x^2+x+2}=\sqrt{2x+3}\Rightarrow x^2+x+2=2x+3\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2};x=\frac{1-\sqrt{5}}{2}\)Tự đối chiếu điều kiện xác định -,-

\(\sqrt{x^2+x+2}=2\sqrt{2x+3}\Rightarrow x^2+x+2=4\left(2x+3\right)\Leftrightarrow x^2-7x-10=0\)

Tới đây bí rồi huhu

25 tháng 1 2018

bình phương hai vế rồi rút gọn, phân tích thành nhân tử

\(\left(x+1\right)\left(x^3-9x^2+7x+10\right)=0\)0

15 tháng 1 2020

a) \(x^2-7x-5=0\)

\(\Leftrightarrow x^2-2.x.\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-5=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{69}{4}=0\)

\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{69}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{69}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{2}-\frac{\sqrt{69}}{2}=0\\x-\frac{7}{2}+\frac{\sqrt{69}}{2}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{69}}{2}\\x=\frac{7-\sqrt{69}}{2}\end{cases}}\)

Vậy tập hợp nghiệm\(S=\left\{\frac{7+\sqrt{69}}{2};\frac{7-\sqrt{69}}{2}\right\}\)

b) \(3x^2-5x-8=0\)

\(\Leftrightarrow3x^2+3x-8x-8=0\)

\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{8}{3}\end{cases}}}\)

Vậy tập hợp nghiệm \(S=\left\{-1;\frac{8}{3}\right\}\)

16 tháng 4 2017

a) \(x^3-2x^2-5x+6=0\)

\(\Leftrightarrow\left(x^3-2x^2+x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x\left(x-1\right)^2-6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)-6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\\ \left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Vậy ..............................

b) Đặt \(2x^2+7x-3=a\) theo cách đặt ta có :

\(\left(a-5\right)\cdot a=6\)

\(\Leftrightarrow a^2-5a-6=0\)

nhận xét : \(a-b+c=1-\left(-5\right)-6=0\)

\(\Rightarrow a_1=1\)

\(a_2=\dfrac{-6}{1}=-6\)

Với \(a=a_1=1\) \(\Rightarrow2x^2+7x-3=1\)

\(\Leftrightarrow2x^2+7x-4=0\)

\(\Delta=7^2-4\cdot2\cdot\left(-4\right)=49+32=81\) ( \(\sqrt{\Delta}=\sqrt{81}=9\) )

\(\Delta>0\) nên pt có 2 nghiệm phân biệt :

\(x_1=\dfrac{-7+9}{2\cdot2}=\dfrac{1}{2}\)

\(x_2=\dfrac{-7-9}{2\cdot2}=-4\)

Với \(a=a_2=-6\) \(\Rightarrow2x^2+7x-3=-6\\ \Leftrightarrow2x^2+7x+3=0\)

\(\Delta=7^2-4\cdot2\cdot3=49-24=25\)

\(\sqrt{\Delta}=\sqrt{25}=5\)

\(\Delta>0\) nên pt có 2 nghiệm phân biệt :

\(x_3=\dfrac{-7+5}{2\cdot2}=-\dfrac{1}{2}\)

\(x_4=\dfrac{-7-5}{2\cdot2}=-3\)

Vậy \(x_1=\dfrac{1}{2};x_2=-4;x_3=\dfrac{-1}{2};x_4=-3\) là các giá trị cần tìm

22 tháng 8 2017

Đặt \(\sqrt{x^2+7x+8}=a\) thì ta có

\(a^2+a-20=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-5\left(l\right)\\a=4\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2+7x+8}=4\)

\(\Leftrightarrow x^2+7x-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=1\end{cases}}\)

19 tháng 10 2020

\(x^2+7x+\sqrt{x^2+7x+8}=12\)

ĐK : \(x^2+7x+8\ge0\Leftrightarrow\orbr{\begin{cases}x\le\frac{-7-\sqrt{17}}{2}\\x\ge\frac{-7+\sqrt{17}}{2}\end{cases}}\)

Đặt \(t=x^2+7x\)

pt \(\Leftrightarrow t+\sqrt{t+8}=12\)

\(\Leftrightarrow\sqrt{t+8}=12-t\)\(-8\le t\le12\))

Bình phương hai vế

\(\Leftrightarrow t+8=144-24t+t^2\)

\(\Leftrightarrow t^2-24t+144-t-8=0\)

\(\Leftrightarrow t^2-25t+136=0\)(*)

\(\Delta=b^2-4ac=\left(-25\right)^2-4\cdot136=625-544=81\)

\(\Delta>0\)nên (*) có hai nghiệm phân biệt

\(\hept{\begin{cases}t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{25+\sqrt{81}}{2}=\frac{34}{2}=17\left(loai\right)\\t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{25-\sqrt{81}}{2}=\frac{16}{2}=8\left(nhan\right)\end{cases}}\)

\(\Rightarrow x^2+7x=8\)

\(\Rightarrow x^2+7x-8=0\)

\(\Rightarrow x^2-x+8x-8=0\)

\(\Rightarrow x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}\left(tm\right)}\)

Vậy phương trình có hai nghiệm \(\hept{\begin{cases}x_1=1\\x_2=-8\end{cases}}\)

30 tháng 12 2016

x=11.94685508 nha