K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Lập bảng xét dấu :

x \(\frac{-5}{2}\) \(\frac{1}{3}\) 
2x+5-0+\(|\)+
1-3x+\(|\)+0-

+) Nếu \(x\le\frac{-5}{3}\) thì \(|2x+5|=-2x-5\)

                                         \(|1-3x|=1-3x\)

\(pt\Leftrightarrow-2x-5=1-3x\)

\(\Leftrightarrow-2x+3x=1+5\)

\(\Leftrightarrow x=6\)( loại )

+) Nếu \(\frac{-5}{2}< x< \frac{1}{3}\) thì \(|2x+5|=2x+5\)

                                                     \(|1-3x|=1-3x\)

\(pt\Leftrightarrow2x+5=1-3x\)

\(\Leftrightarrow2x+3x=1-5\)

\(\Leftrightarrow5x=-4\)

\(\Leftrightarrow x=\frac{-4}{5}\left(tm\right)\)

+) Nếu \(x\ge\frac{1}{3}\) thì \(|2x+5|=2x+5\)

                                     \(|1-3x|=3x-1\)

\(pt\Leftrightarrow2x+5=3x-1\)

\(\Leftrightarrow2x-3x=-1-5\)

\(\Leftrightarrow-x=-6\)

\(\Leftrightarrow x=6\left(tm\right)\)

Vậy ....

13 tháng 1 2017

(2x^2-3x+1)(2x^2+5x+1)=9x^2

<=> (2x^2+5x+1- 8x)(2x^2 +5x+1)=9x^2

<=> (2x^2+5x+1)^2 -8x(2x^2+5x+1)=9x^2

<=>  (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)=9x^2

<=>  (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)+(4x)^2=9x^2+16x^2

<=> (2x^2+5x+1 - 4x)^2=25x^2

<=> (2x^2+x+1)^2=25x^2

<=> (2x^2+x+1)^2 - 25x^2 =0

<=>(2x^2+x+1-5x)(2x^2+x+1+5x)=0

<=>(2x^2-4x+1)(2x^2+6x+1)=0

<=> (2x^2-4x+1)=0 => 2( x^2 - 2x + 1/2)=0

                                <=> x^2-2x +1/2 =0

                                <=> (x^2-2x+1) -1/2 =0

                                <=> (x-1)^2 =1/2     =>  x-1 =căn(1/2)  => x=căn(1/2)+1

                                                              => x-1=-(căn(1/2)) => x=- (căn(1/2)) +1

Hoặc  2x^2 +6x +1=0 

         <=> x^2 + 3x +1/2 =0                

         <=> (x^2 + 2*(1.5)x + (1.5)^2) -(1.5)^2+1/2 =0

         <=> (x+1.5)^2 - 7/4 =0

         <=> (x+1.5)^2 = 7/4    =>        x+1.5 = căn(7/4) => x=căn(7/4) -1.5

                                           =>      x+1.5 =- căn(7/4) => x=-căn(7/4) -1.5

nhớ thanks bạn (+_+)

a: 3x-4=0

=>3x=4

hay x=4/3

b: (x+2)(2x-3)=0

=>x+2=0 hoặc 2x-3=0

=>x=-2 hoặc x=3/2

25 tháng 3 2017

x={1/3; 3/2; -5}

20 tháng 1 2017

Giải phương trình:

a) (x+2)- (x-2)= 12x(x-1) - 8

<=> (x+ 3.x2.2 + 3.x.2+ 23) - (x- 3.x2.2 + 3.x.2- 23) - [12x(x-1) - 8] = 0

<=> (x+ 6x+ 12x + 8) - (x- 6x+ 12x - 8) - (12x- 12x - 8) = 0

<=> x+ 6x+ 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0

<=> 12x +32 = 0

<=> x =  \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)         

                                                 Vậy phương trình có nghiệm duy nhất là  \(-2\frac{2}{3}\)

b) (3x-1)- 5(2x+1)+ (6x-3)(2x+1) = (x-1)2

<=> (9x- 6x + 1) - 5(4x+ 4x + 1) + 3(2x - 1)(2x + 1) - (x- 2x +1) = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 12x2 - 3 - x+ 2x -1 = 0

<=> -24x - 8 = 0

<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)  

                  Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)

 

4 tháng 2 2021

\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{5;-2\right\}\)

\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)

Câu d xem lại đề

4 tháng 2 2021

có ai giúp mình câu c và d không mình đang cần gấpyeu

24 tháng 4 2017

\(2\left(3x-2\right)+\left(x-3\right)^2=0\)

\(\Rightarrow2\left(3x-2\right)=\left(x-3\right)^2\)

\(\Rightarrow6x-4=x^2-9\)

\(\Rightarrow6x-x^2=4-9\)

\(\Rightarrow6x-x^2=-5\)

\(\Rightarrow...\)

pn tự lm nka, mk ms lp 7 ò

24 tháng 4 2017

\(\Leftrightarrow6x-4+x^2-6x+9=0\)

\(\Leftrightarrow x^2+5=0\)

\(\Leftrightarrow x^2=-5\)(vô lý)

Vậy ptrình vô nghiệm

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

Bài 1: 

a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)

\(\Leftrightarrow6-8x-10+2x-5=0\)

\(\Leftrightarrow-6x+11=0\)

\(\Leftrightarrow-6x=-11\)

hay \(x=\dfrac{11}{6}\)

b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)

\(\Leftrightarrow6-12x-11+3x-1=0\)

\(\Leftrightarrow-9x-6=0\)

\(\Leftrightarrow-9x=6\)

hay \(x=-\dfrac{2}{3}\)

23 tháng 8 2019

4x2 – 1 = (2x + 1)(3x – 5)

⇔ 4x2 – 1 – (2x + 1)(3x – 5) = 0

⇔ (2x – 1)(2x + 1) – (2x + 1)(3x – 5) = 0

⇔ (2x + 1)[(2x – 1) – (3x – 5)] = 0

⇔ (2x + 1)(2x – 1 – 3x + 5) = 0

⇔ (2x + 1)(4 – x) = 0

⇔ 2x + 1= 0 hoặc 4 – x = 0

   + 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.

   + 4 – x = 0 ⇔ x = 4.

Vậy phương trình có tập nghiệm Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8