K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

2x - | 6x - 7 | = -x + 8

* x > 0

Phương trình trở thành : 2x - 6x - 7 = -x + 8

                               <=> 2x - 6x + x = 8 + 7

                               <=> -3x = 15

                               <=> x = -5 ( không tmđk vì < 0 )

* x < 0

Phương trình trở thành : 2x - (-6x - 7) = -x + 8

                               <=> 2x + 6x + 7 = -x + 8

                               <=> 2x + 6x + x = 8 - 7

                               <=> 9x = 1

                               <=> x = 1/9 ( không tmđk vì > 0 )

Vậy phương trình vô nghiệm 

11 tháng 6 2020

Bài làm

~ Bài bạn Rin thiếu ngoặc khi xét biểu thức nếu vào phương trình đầu ~

*Nếu 6x - 7 > 0 <=> x > 7/6 

----> | 6x - 7 | = 6x - 7

=> Phương trình: 2x - ( 6x - 7 ) = -x + 8

<=> 2x - 6x + 7 = -x + 8

<=> -4x + 7 + x - 8 = 0

<=> -3x - 1 = 0

<=> -3x = 1

<=> x = -1/3 ( Không thỏa mãn )

*Nếu 6x - 7 < 0 <=> x > 7/6

----> | 6x - 7 | = -( 6x - 7 ) = 7 - 6x

=> Phương trình: 2x - ( 7 - 6x ) = -x + 8

<=> 2x - 7 + 6x + x - 8 = 0

<=> 9x - 15 = 0

<=> x = 15/9 ( Thỏa mãn )

Vậy x = 15/9 là nghiệm phương trình. 

a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)

=>8x+4-18x+3=2x+1

=>-10x+7=2x+1

=>-12x=-6

hay x=1/2

b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)

=>5x-21=6x

=>-x=21

hay x=-21

20 tháng 1 2017

Giải phương trình:

a) (x+2)- (x-2)= 12x(x-1) - 8

<=> (x+ 3.x2.2 + 3.x.2+ 23) - (x- 3.x2.2 + 3.x.2- 23) - [12x(x-1) - 8] = 0

<=> (x+ 6x+ 12x + 8) - (x- 6x+ 12x - 8) - (12x- 12x - 8) = 0

<=> x+ 6x+ 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0

<=> 12x +32 = 0

<=> x =  \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)         

                                                 Vậy phương trình có nghiệm duy nhất là  \(-2\frac{2}{3}\)

b) (3x-1)- 5(2x+1)+ (6x-3)(2x+1) = (x-1)2

<=> (9x- 6x + 1) - 5(4x+ 4x + 1) + 3(2x - 1)(2x + 1) - (x- 2x +1) = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 12x2 - 3 - x+ 2x -1 = 0

<=> -24x - 8 = 0

<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)  

                  Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)

 

12 tháng 2 2020

\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)

\(\Leftrightarrow\)\(\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)

\(\Leftrightarrow\)\(6x^2-13x+6=6x^2+43x+7\)

\(\Leftrightarrow\)\(-56x=1\)

\(\Leftrightarrow\)\(x=\frac{-1}{56}\)

\(\Rightarrow\)\(S=\left\{-\frac{1}{56}\right\}\)

Study well !

26 tháng 5 2016

x=-2 và 1

26 tháng 5 2016

x = 1 và x = -2 nha bạn 

28 tháng 6 2018
x \(\frac{7}{6}\) 
6x-7-0+

+) Nếu  \(x< \frac{7}{6}\Leftrightarrow\left|6x-7\right|=7-6x\)

\(pt\Leftrightarrow2x-\left(7-6x\right)=-x+8\)

\(\Leftrightarrow2x-7+6x=-x+8\)

\(\Leftrightarrow9x=15\)

\(\Leftrightarrow x=\frac{5}{3}\)( loại )

+) Nếu  \(x\ge\frac{7}{6}\Leftrightarrow\left|6x-7\right|=6x-7\)

\(pt\Leftrightarrow2x-\left(6x-7\right)=-x+8\)

\(\Leftrightarrow2x-6x+7=-x+8\)

\(\Leftrightarrow-3x=1\)

\(\Leftrightarrow x=-\frac{1}{3}\)( loại )

Vậy phương trình vô nghiệm

1 tháng 2 2020

1) \(x^4-2x^2-144x+1295=0\)

\(\Rightarrow\)Cậu xem lại đề thử xem nhé !

2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)

\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)

\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)

\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)

hoặc \(x-2=0\)

hoặc \(x^2+x+4=0\)

\(\Leftrightarrow\)\(x=-3\left(tm\right)\)

hoặc   \(x=2\left(tm\right)\)

hoặc  \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)

3) \(x^4-2x^3+4x^2-3x-10=0\)

\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)

\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(x-2=0\)

hoặc \(x^2-x+5=0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

hoặc \(x=2\left(tm\right)\)

hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)

Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)

2 tháng 3 2019

\(\Leftrightarrow\left(x^2-6x+9\right)^2-1-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-6x+10\right)-15\left(x^2-6x+10\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2-6x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+x-7x-7\right)=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x+1\right)\left(x-7\right)=0\)

\(Vi:x^2-6x+10=0\Leftrightarrow\left(x-3\right)^2+1>0,\forall x\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

\(hay:x-7=0\Leftrightarrow x=7\)

\(V...\)

\(:)\)

\(4+2x\left(2x+4\right)=-x\)

\(4+4x^2+8x=-x\)

\(4+4x^2+8x+x=0\)

\(4+4x^2+9x=0\)

=> vô nghiệm