K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

\(\frac{2x}{2x-1}+\frac{x}{2x+1}=1+\frac{4}{\left(2x-1\right)\left(2x+1\right)}\)ĐK : \(x\ne\pm\frac{1}{2}\)

\(\Leftrightarrow\frac{2x\left(2x+1\right)+x\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)+4}{\left(2x-1\right)\left(2x+1\right)}\)

\(\Rightarrow4x^2+2x+2x^2-x=4x^2-1+4\)

\(\Leftrightarrow2x^2+x-3=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{3}{2};x=1\)

Vậy tập nghiệm của pt là S = { -3/2 ; 1 } 

=>2x^3+2-2x^2-1=0

=>2x^3-2x^2+1=0

=>\(x\simeq-0,57\)

AH
Akai Haruma
Giáo viên
22 tháng 5 2023

Bạn xem đã viết đúng phương trình chưa vậy?

14 tháng 7 2021

Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ \(2x - 2\) ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = \(2x - 2\)
\(x^2-2x+4 \) = \((2x - 2)^2\)
⇔ \(x^2-2x+4 \) = \(4x^2 - 8x + 4 \)
⇔ \(0 = 3x^2 - 6x \)
⇔ 0 = \(3x(x-1)\)
\(\begin{cases} x=0\\ x-1=0 \end{cases} \)
Mà x ≥ 1
Vậy x ∈ { 1}

14 tháng 7 2021

Xin lỗi mình lm sai chút :)))
Vì \(\sqrt{x^2-2x+4} \)≥ 0 ( đúng với ∀ x )
→ 2x − 2 ≥ 0 
→x ≥ 1
Ta có : \(\sqrt{x^2-2x+4} \) = 2x−2
⇔ \(x^2 - 2x + 4\)\((2x-2)^2\)
⇔ 0=\(3x^2 - 6x \)
⇔ 0 = 3x(x−2)
\(\left[\begin{array}{} x=0\\ x=2 \end{array} \right.\)
Mà x ≥ 1
→ x ∈ {2}

9 tháng 5 2021

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)

\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+x-x^2+3x=4x\)

\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0x=0\)

Phương trình có vô số nghiệm , trừ x = -1,x = 3

Vậy ...

\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)

\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)

\(\Leftrightarrow12x+1< 36x+4-24x-3\)

\(\Leftrightarrow12x+1< 12x+1\)

\(\Leftrightarrow12x-12x< 1-1\)

\(\Leftrightarrow0x< 0\)

Vậy S = {x | x \(\in R\)}

 

4 tháng 2 2021

\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{5;-2\right\}\)

\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)

Câu d xem lại đề

4 tháng 2 2021

có ai giúp mình câu c và d không mình đang cần gấpyeu

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)

\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)

\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)

=>-8x+8=0

hay x=1(nhận)

c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

21 tháng 12 2021

c: =>7-x=-2x-4

=>x=3

21 tháng 12 2021

sao chỉ lm 1 câu thế ja?

27 tháng 2 2021

`(3x-1)/(x-1)-(2x+5)/(x+3)+4/(x^2+2x-3)=1(x ne 1,-3)`

`<=>((3x-1)(x+3))/(x^2+2x-3)-((2x+5)(x-1))/(x^2+2x-3)+4/(x^2+2x-3)=(x^2+2x-3)/(x^2+2x-3)`

`<=>(3x-1)(x+3)-(2x+5)(x-1)+4=x^2+2x-3`

`<=>3x^2+8x-3-2x^2-3x+5+4=x^2+2x-3`

`<=>x^2+5x+6=x^2+2x-3`

`<=>3x=-9`

`<=>x=-3(loại)`

Vậy `S={cancel0}`

ĐKXĐ: \(x\notin\left\{1;-3\right\}\)

Ta có: \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Leftrightarrow\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}+\dfrac{4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)+4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+8x-3-\left(2x^2+3x-5\right)+4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+8x+1-2x^2-3x+5}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

Suy ra: \(x^2+5x+6-x^2-2x+3=0\)

\(\Leftrightarrow3x+9=0\)

\(\Leftrightarrow3x=-9\)

hay x=-3(Không nhận)

Vậy: \(S=\varnothing\)