K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

câu này quen ha

cái này giả sử x+1>=y-5, rồi cho chúng = nhau

hoặc liên hợp cũng được (PT1)

31 tháng 3 2019

Giải ra được y = 2 x =3 nha muốn biết cách giải ib mình dài lắm

Chúc bạn tìm ra lời giải !!!

1 tháng 4 2019

\(\left(1\right)\Leftrightarrow\frac{x}{y}-\frac{y}{x}=\frac{5}{6}\Leftrightarrow\frac{x^2-y^2}{xy}=\frac{5}{6}\)

                            \(\Leftrightarrow6x^2-6y^2=5xy\)(3)

 \(\left(2\right)\Leftrightarrow6x^2-6y^2=30\)(4)

Lấy (3) - (4) được 5xy - 30 = 0 <=> xy = 6

Thay vào (3) sẽ tìm đc hiệu x^2 và y^2 đưa về hệ ,auto làm nốt

20 tháng 7 2020

Câu này dễ mà, sao c lm CTV được:vv

\(\hept{\begin{cases}2x^2+\frac{x}{2x-y}=2\left(1\right)\\y^2+\frac{y}{2x-y}=4\left(2\right)\end{cases}}\)

ĐKXĐ: \(2x-y\ne0\)

Nhân 2 vế PT (1) với 2 rồi trừ đi PT (2) ta được:

\(4x^2-y^2+1=0\left(3\right)\)

Ta xét 2 trường hợp:

TH1:\(2x+y=0\)<=>\(y=-2x\)

Thay vào PT (1) rồi ta tính được \(\left(x;y\right)=\left(\pm\sqrt{\frac{7}{8}};\mp2\sqrt{\frac{7}{8}}\right)\)

TH2: \(2x+y\ne0\)

<=>\(2x-y=\frac{-1}{2x+y}\)

Thay vào PT(1) ta được:

\(xy=-2\)

Thay vào \(4x^2-y^2+1=0\)ta tính được

\(\left(x;y\right)=\left(...\right)\)

Vậy....

Phần tính toán cậu tự tính nhé:vvv

20 tháng 7 2020

@Lê Phúc Huy: lí do mik đã viết thẳng vào câu hỏi. Ngay dòng dòng đầu mà bạn không thấy à. Hay mắt lé mà không thấy :]>

14 tháng 2 2016

x^2+xy+y^2=19(1)

x-xy+y=-1(2) =>x=xy-1-y(4)

Cộng (1) cho (2) ta dc x^2+y^2+x+y=18(3)

thay (4) vào (3) ta dc (xy-1-y)^2+y^2+(xy-1-y)+y=18(5)

14 tháng 2 2016

18(5)

duyện đi

8 tháng 7 2017

hong dịch đ.c :>
 

5 tháng 4 2015

x+y+xy=5

<=> x+1+y+xy=6

<=>(x+1)+y(x+1)=6

<=>(x+1)(y+1)=6

Đật X+1 =a và y+1=b ta  được:

a+b=6 và a3+b3=35

<=>a3b3=216 và a3+b3=35

Theo hệ thức Vi-ét ta có a, b là nghiệm của phương trình:

X2-35X+216=0

<=> X=27 hoặc X=8

=> a3=27;b3=8 hoặc a3=8;b3=27

<=>a=3; b=2 hoặc a=2;b=3

TH1: a=3;b=2

=> x+1=3 và y+1=2

<=>x=2 và y=1

TH2:a=2 và b=2

=>x+1=2 và y+1=3

<=>x=1 và y=2

Vậy,hpt đã cho có 2 cặp nghiệm (x,y) là (2;1) ; (1;2)

25 tháng 7 2017

Đúng thì làm vậy.

Ta có:

\(\sqrt[3]{x-y}=\sqrt{x-y}\)

\(\Leftrightarrow\sqrt[3]{x-y}\left(1-\sqrt[6]{x-y}\right)=0\)

Dễ thấy x = y không phải là nghiệm

\(\Rightarrow1=\sqrt[6]{x-y}\)

\(\Leftrightarrow1=x-y\)

\(\Leftrightarrow x=1+y\)

Thế vô PT còn lại ta được

\(\sqrt[3]{2y+1}=\sqrt{2y-3}\)

\(\Leftrightarrow\left(2y+1\right)^2=\left(2y-3\right)^3\)

\(\Leftrightarrow8y^3-40y^2+50y-28=0\)

\(\Leftrightarrow2\left(2y-7\right)\left(2y^2-3y+2\right)=0\)

\(\Leftrightarrow y=\frac{7}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

25 tháng 7 2017

Xem lại đề nhé

2 tháng 1 2016

\(\left(x+1\right)\left(y+1\right)=2;\text{ }\left(y+1\right)\left(z+1\right)=5;\text{ }\left(z+1\right)\left(x+1\right)=10\)

\(x+1=a;\text{ }y+1=b;\text{ }z+1=c\)

\(\rightarrow ab=2;\text{ }bc=5;\text{ }ca=10\Rightarrow\left(abc\right)^2=100\Rightarrow abc=\pm10\)

\(+abc=10:\text{ }c=\frac{abc}{ab}=\frac{10}{2}=5\), tương tự với a, b

\(+abc=-10\) tương tự trên.

2 tháng 1 2016

bài 1

a)x^2=(6-6)*x*y

x^2  = 0*x*y

x^2  =0

x     = 0