![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
<=>x2+2x+a2-3-2ax-2a=0
<=>x2+2x(1-a)+(a2-2a-3)=0
<=>x2-2x(a-1)+(a-1)2-4=0
<=>(x-a+1)2=4
<=>|x-a+1|=2
<=>x=-3+a hoặc x=1+a
x(x+2)+a^2-3= 2a(x+1)
<=> x^2 + 2x + a^2 -3 = 2ax +2a
<=> x^2+2ax+a^2= 2a - 2x +3
<=> (x+a)^2 =
ấn đúng thì trả lời tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x(x+2)+a2-3=2a(x+1)
<=> x2+2x-2ax+a2-2a-3=0
<=> (x2-ax-x)-(ax-a2-a)+(3a-3a-3)=0
<=> (x-a-1)(x-a+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x=a+1\\x=a-3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow x\left(z+2\right)+a^2-3=xz+2x+a^2-3\)
\(\Rightarrow xz+2x+a^2-3=2a\left(x+1\right)\)
\(\Rightarrow xz+2x+a^2-3=2ax+2a\)
\(\Rightarrow xz-2x+2x+a^2-2a-3=0\)
\(\Rightarrow xz+\left(2-2a\right)x+a^2-2a-3=0\)
\(\Rightarrow z=\frac{\left(2a-2\right)x-a^2+2a+3}{x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, x^2 - x - 20 = 0
=> x^2 - 5x + 4x - 20 = 0
=> x(x - 5) + 4(x - 5) = 0
=> (x + 4)(x - 5) = 0
=> x + 4 = 0 hoặc x - 5 = 0
=> x = -4 hoặc x = 5
b, x^3 - 6x^2 + 12x + 19 = 0
=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0
=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0
=> (x^2 - 7x + 19)(x + 1) = 0
x^2 - 7x + 19 > 0
=> x + 1 = 0
=> x = -1
\(a,x^2-x-20=0\)
\(x^2-5x+4x-20=0\)
\(\left(x-5\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
\(b,x^3-6x^2+12x+19=0\)
\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)
\(\left(x+1\right)\left(x^2-7x+19\right)=0\)
Vì \(\left(x^2-7x+19\right)>0\forall x\)
\(x+1=0\)
\(x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
pt <=> x^3-x^2+x+x^2-x+1+x^2+2=x^3+2x
<=> x^3+x^2+3 = x^3+2x
<=> x^3+x^2+3-x^3-2x=0
<=> x^2-2x+3 = 0
<=> (x^2-2x+1)+2=0
<=> (x-1)^2 = -2
=> pt vô nghiệm vì (x-1)^2 >= 0
Tk mk nha
Giải thì ok nhưng ... đoạn sau ..
\(\Leftrightarrow x^2+2x+a^2-3=2ax+2a\)
\(\Rightarrow x^2-2ax+2x+a^2-2a-3=0\)
\(\Rightarrow x^2+\left(-2a+2\right)x+a^2-2a-3=0\)
đề hơi dị để nghĩ tiếp đã