Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: Khai triển HĐT rút gọn được 3 x 2 + 6x + 7 = 0
Vì (3( x 2 + 2x + 1) + 4 < 0 với mọi x nên giải được x ∈ ∅
Cách 2. Chuyển vế đưa về ( x + 3 ) 3 = ( x - 1 ) 3 Û x + 3 = x - 1
Từ đó tìm được x ∈ ∅
b) Đặt x 2 = t với t ≥ 0 ta được t 2 + t - 2 = 0
Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)
Từ đó tìm được x = ± 1
c) Biến đổi được
d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x ∈ {0; 2; 4}
a) Triển khai hằng đẳng thức và rút gọn được 8x + 12 = 0
Từ đó tìm được x = - 3 2
b) Sử dụng hằng đẳng thức, biến đổi phương trình về dạng: (x - 3)(2 x 2 - 4x) = 0
Sưe dụng phương pháp giải PT tích tìm được x ∈ {0; 2; 3}
c) Quy đồng khử mẫu ta được 48x - 16 = 0
Từ đó tìm được x = 1 3
d) Quy đồng khử mẫu ta được 3x + 6 = 2x + 63
Từ đó tìm được x = 57.
Phương trình ⇔ x 2 - 6 x + 9 = 0
⇔ ( x - 3 ) 2 = 0
⇔ x = 3
Vậy phương trình có nghiệm x = 3
2 x 2 – x = 3 – 6x
⇔ 2 x 2 – x + 6x – 3 = 0
⇔ (2 x 2 + 6x) – (x + 3) = 0
⇔ 2x(x + 3) – (x + 3) = 0
⇔ (2x – 1)(x + 3) = 0
⇔ 2x – 1 = 0 hoặc x + 3 = 0
2x – 1 = 0 ⇔ x = 1/2
x + 3 = 0 ⇔ x = -3
Vậy phương trình có nghiệm x = 1/2 hoặc x = -3
\(\left(x^2-6x+5\right)\left(x^2-8x+12\right)=252\)
\(\Leftrightarrow x^4-14x^3+65x^2-112x-192=0\)
\(\Leftrightarrow\left(x^2-7x+24\right)\left(x-8\right)\left(x+1\right)=0\)
TH1 : \(x-8=0\Leftrightarrow x=8\)
TH2 : \(x+1=0\Leftrightarrow x=-1\)
TH3 : \(x^2-7x+24=0\)
\(\left(-7\right)^2-4.24=49-96< 0\)vô nghiệm