Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+\left(x+1\right)\left(5x^2-6x-6\right)=0\)
\(\Leftrightarrow x^4+5x^3-x^2-12x-6=0\)
\(\Leftrightarrow x^4-x^3+6x^3-x^2-6x^2+6x^2\)
\(-6x-6x-6=0\)
\(\Leftrightarrow\left(x^4-x^3-x^2\right)+\left(6x^3-6x^2-6x\right)+\)
\(\left(6x^2-6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x^2-x-1\right)+6x\left(x^2-x-1\right)+\)
\(6\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x^2+6x+6\right)\left(x^2-x-1\right)=0\)
\(TH1:x^2+6x+6=0\)
Ta có: \(\Delta=6^2-4.6=12\sqrt{\Delta}=\sqrt{12}\)
pt có 2 nghiệm:
\(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\)
\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\)
\(TH2:x^2-x-1=0\)
Ta có: \(\Delta=1^2+4.1=5,\sqrt{\Delta}=\sqrt{5}\)
pt có 2 nghiệm:
\(x_1=\frac{1+\sqrt{5}}{2}\)và \(x_2=\frac{1-\sqrt{5}}{2}\)
Vậy pt có 4 nghiệm \(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\);\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\);
\(x_3=\frac{1+\sqrt{5}}{2}\);\(x_4=\frac{1-\sqrt{5}}{2}\)
Làm tốt rồi nhưng mà lớp 8 chưa học cách giải pt bậc 2 \(\Delta\). Thì chúng ta có thể:
VD TH1: \(x^2+6x+6=0\)
<=> \(x^2+6x+9-9+6=0\)
<=> \(\left(x+3\right)^2=3\)
<=> \(\orbr{\begin{cases}x+3=\sqrt{3}\\x+3=-\sqrt{3}\end{cases}}\)<=> \(\orbr{\begin{cases}x=-3+\sqrt{3}\\x=-3-\sqrt{3}\end{cases}}\)
tương tự Th2.
\(PT< =>x^4+5x^3-6x^2-6x+5x^2-6x-6=0\)
\(< =>x^4+5x^3-x^2-12x-6=0\)
\(< =>\left(x^2-x-1\right)\left(x^2+6x+6\right)=0\)
<=>\(\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}}\)hay \(\orbr{\begin{cases}x=-3+\sqrt{3}\\x=-3-\sqrt{3}\end{cases}}\)
Vậy \(S=\left\{\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2};-3+\sqrt{3};-3-\sqrt{3}\right\}\)
Đk:\(x\ne0;x\ne-1;x\ne-2;x\ne-3;x\ne-4\)
\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}=1\)
\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}=1\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}=1\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+4}=1\)
\(\Leftrightarrow\frac{\left(x+4\right)}{x\left(x+4\right)}-\frac{x}{x\left(x+4\right)}=1\)
\(\Leftrightarrow\frac{x+4-x}{x\left(x+4\right)}=1\)
\(\Leftrightarrow x+4-x=x\left(x+4\right)\)
\(\Leftrightarrow-x^2-4x+4=0\)
\(\Leftrightarrow-\left(x+2\right)^2=-8\)
\(\Leftrightarrow x=\pm\sqrt{8}-2\)
\(\left(x^2+5x^2\right)-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow4x^2-10x-24=0\)
\(\Leftrightarrow\frac{-\left(-10\right)+\sqrt{\left(-10\right)^2-4.4.\left(-24\right)}}{2.4}\)
\(\Leftrightarrow\frac{10+\sqrt{484}}{2.4}\)
\(\Leftrightarrow\frac{10+\sqrt{484}}{8}\)
\(\Leftrightarrow\frac{-\left(-10\right)-\sqrt{\left(-10\right)^2-4.4.\left(-24\right)}}{2.4}\)
\(\Leftrightarrow\frac{10-\sqrt{\left(10\right)^2+4.4.24}}{2.4}\)
\(\Leftrightarrow\frac{10-\sqrt{484}}{8}\)
\(\Rightarrow\hept{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)
Sai đâu sửa hộ :)
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
Vì \(\left|-x^2+5x-6\right|\ge0\Rightarrow x^2-5x+6\ge0\)
=> Giải bpt.
ĐKXĐ : x2 - 5x + 6 \(\ge0\)
<=> \(\orbr{\begin{cases}x\le2\\x\ge3\end{cases}}\)(1)
Khi đó |-x2 + 5x - 6| = x2 - 5x + 6
<=> \(\orbr{\begin{cases}-x^2+5x-6=x^2-5x+6\\-x^2+5x-6=-x^2+5x-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\left(x^2-5x+6\right)=0\\\forall x\left(2\right)\end{cases}}\)
Khi 2(x2 - 5x + 6) = 0
<=> (x - 2)(x - 3) = 0
<=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)(3)
Từ (1) ; (2) ; (3) => \(\orbr{\begin{cases}x\le2\\x\ge3\end{cases}}\)
Vậy x \(\le2\text{ hoặc }x\ge3\)là nghiệm phương trình