Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
Đặt: x2+5x+4=t
Ta có:
\(t\left(t+2\right)-120=t^2+2t-120=t^2+12t-10t-120=t\left(t+12\right)-10\left(t+12\right)\)
\(=\left(t+12\right)\left(t-10\right)=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
\(\Rightarrow\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2010+18}{6}=0\)
\(\Rightarrow\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2010}{6}+3=0\)
\(\Rightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2010}{6}\right)=0\)
\(\Rightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+6\right)=0\)
Vì :\(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\ne0\)
=> x + 2010 = 0
=> x = -2010
b) \(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)
\(\Rightarrow\frac{x-3}{2011}+\frac{x-2}{2012}-\frac{x-2012}{2}-\frac{x-2011}{3}=0\)
\(\Rightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)-\left(\frac{x-2012}{2}-1\right)-\left(\frac{x-2011}{3}-1\right)=0\)
\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}-\frac{x-2014}{2}-\frac{x-2014}{3}=0\)
\(\Rightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\ne0\)
=> x - 2014 = 0
=> x = 2014
c) \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Rightarrow\frac{x+1}{65}+\frac{x+3}{63}-\frac{x+5}{61}-\frac{x+7}{59}=0\)
\(\Rightarrow\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)-\left(\frac{x+5}{61}+1\right)-\left(\frac{x+7}{59}+1\right)=0\)
\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Rightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
Vì :\(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\)
=> x + 66 = 0
=> x = -66
a) Ta có: \(x\left(x+1\right)-\left(x+2\right)\left(x-3\right)=7\)
\(\Leftrightarrow\) \(x^2+x-\left(x^2-x-6\right)=7\)
\(\Leftrightarrow\) \(x^2+x-x^2+x+6=7\)
\(\Leftrightarrow\) \(2x+6=7\)
\(\Leftrightarrow\) \(2x=1\) \(\Leftrightarrow\) \(x=\frac{1}{2}\)(thỏa mãn)
Vậy phương trình có nghiệm duy nhất \(x=\frac{1}{2}\)
b) Ta có : \(\frac{x-3}{x+1}=\frac{x^2}{x^2-1}\) (1)
Điều kiện xác định của phương trình là \(x\) \(\ne\)\(1\) và \(x\) \(\ne\) \(-1\)
Khi đó (1) trở thành: \(\frac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow\) \(\left(x-3\right)\left(x-1\right)=x^2\) (Vì \(\left(x+1\right)\left(x-1\right)\ne0\))
\(\Leftrightarrow\) \(x^2-4x+3=x^2\)
\(\Leftrightarrow\) \(3-4x=0\)
\(\Leftrightarrow\) \(4x=3\) \(\Leftrightarrow\) \(x=\frac{3}{4}\)(thỏa mãn)
Vậy phương trình có nghiệm duy nhất \(x=\frac{3}{4}\)
1, \(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\\ \\ < =>\dfrac{x-3}{2011}-1+\dfrac{x-2}{2012}-1=\dfrac{x-2012}{2}-1+\dfrac{x-2011}{3}-1\\ \\ < =>\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\\ \\ < =>\left(x-2014\right).\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\\ \\ < =>x-2014=0< =>x=2014\)
2, \(x^2+1=x\\ \\ < =>x^2-x+1=0\\ \\ < =>x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\\ \\ < =>\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
có vế trái luôn dương, vế phải = 0 => vô nghiệm
Xét \(x>2012;x< 2011\)
\(\Rightarrow|x-2011|^{2011}+|x-2012|^{2012}>1\)
Xét \(2011< x< 2012\)
\(\Rightarrow\hept{\begin{cases}|x-2011|^{2011}< |x-2011|=x-2011\\|x-2012|^{2012}< |x-2012|=2012-x\end{cases}}\)
\(\Rightarrow|x-2011|^{2011}+|x-2012|^{2012}< x-2011+2012-x=1\)
Xét \(x=2011;x=2012\) dễ thấy nó là nghiệm của phương trình