\(\sqrt{x}+\sqrt{2x-1}+x^2+x-4=\text{0}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

ĐK: \(x\ge\dfrac{1}{2}\)

\(pt\Leftrightarrow\sqrt{x}-1+\sqrt{2x-1}-1+x^2+x-2=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{2x-2}{\sqrt{2x-1}+1}+\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x-1}+1}+x+2\right)\left(x-1\right)=0\)

Vì \(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x-1}+1}+x+2>0\) nên \(x-1=0\Leftrightarrow x=1\left(tm\right)\)

31 tháng 10 2016

x=3 hoặc x=1

1 tháng 2 2020

Đề ý 2 sai hay sao á??

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NV
11 tháng 11 2019

a/ \(x\le8\)

\(\Leftrightarrow x^2+x+12=\left(8-x\right)^2\)

\(\Leftrightarrow x^2+x+12=x^2-16x+64\)

\(\Leftrightarrow17x=52\Rightarrow x=\frac{52}{17}\)

b/ \(x\le4\)

\(\Leftrightarrow x^2+3x-1=\left(4-x\right)^2\)

\(\Leftrightarrow x^2+3x-1=x^2-8x+16\)

\(\Leftrightarrow11x=17\Rightarrow x=\frac{17}{11}\)

c/ \(\left\{{}\begin{matrix}x^2-3x\ge0\\2x-1\ge0\end{matrix}\right.\) \(\Rightarrow x\ge3\)

\(x^2-3x=2x-1\)

\(\Leftrightarrow x^2-5x+1=0\Rightarrow\left[{}\begin{matrix}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)

NV
11 tháng 11 2019

d/ \(2-x\ge0\Rightarrow x\le2\)

\(x^2+2x+4=2-x\)

\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

e/ \(2x^2-x\ge0\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge\frac{1}{2}\end{matrix}\right.\)

\(x^2+2x+4=2x^2-x\)

\(\Leftrightarrow x^2-3x-4=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)

f/ \(x\ge2\)

\(2x-1=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-6x+5=0\Rightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=5\end{matrix}\right.\)

NV
16 tháng 2 2020

a/ ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)

b/ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)

Thay \(x=1\) vào pt thấy ko thỏa mãn

Vậy pt vô nghiệm

d/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)

NV
22 tháng 11 2019

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow2x-3+2\sqrt{x^2-3x+2}=x+1\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=4-x\) (\(x\le4\))

\(\Leftrightarrow4\left(x^2-3x+2\right)=x^2-8x+16\)

\(\Leftrightarrow3x^2-4x-8=0\Rightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{7}}{3}\\x=\frac{2-\sqrt{7}}{3}\left(l\right)\end{matrix}\right.\)

b/ Đặt \(x^2+2x+2=a>0\)

\(a^2+3a-8=0\Rightarrow\left[{}\begin{matrix}a=\frac{-3+\sqrt{41}}{2}\\a=\frac{-3-\sqrt{41}}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2+2x+2-\frac{-3+\sqrt{41}}{2}=0\)

Bạn tự giải nốt, nghiệm quá xấu, chắc bạn ghi sai đề

NV
22 tháng 11 2019

c/ ĐKXĐ: \(-1\le x\le2\)

\(\Leftrightarrow2\left(-x^2+x+2\right)+\sqrt{-x^2+x+2}-5=0\)

Đặt \(\sqrt{-x^2+x+2}=a\ge0\)

\(2a^2+a-5=0\Rightarrow\left[{}\begin{matrix}a=\frac{-1+\sqrt{41}}{2}\\a=\frac{-1-\sqrt{41}}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow-x^2+x+2-\frac{-1+\sqrt{41}}{2}=0\)

??? Lại 1 nghiệm khủng khiếp nữa???

d/ ĐKXĐ: \(\left[{}\begin{matrix}x>0\\x< -1\end{matrix}\right.\)

Đặt \(\sqrt{\frac{2x}{x+1}}=a>0\)

\(a+\frac{1}{a}=2\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)

\(\Rightarrow\sqrt{\frac{2x}{x+1}}=1\Rightarrow2x=x+1\Rightarrow x=1\)

NV
16 tháng 2 2020

1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)

\(t^3+2=2t-2\)

\(\Leftrightarrow t^3-2t+4=0\)

\(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)

\(\Rightarrow t=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)

\(\Leftrightarrow x^2+5x-2=-8\)

\(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)

\(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)