Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định bạn tự giải nhé :)
\(\frac{\sqrt{\left(5-3x\right)^2}-\sqrt{\left(x-1\right)^2}}{x-3+\sqrt{\left(3+2x\right)^2}}=4\Leftrightarrow\frac{\left|5-3x\right|-\left|x-1\right|}{x-3+\left|2x+3\right|}=4\)
Xét các trường hợp :
1. Nếu \(1\le x\le\frac{5}{3}\).............................
2. Nếu \(-\frac{3}{2}\le x< 1\)................................
3. Nếu \(x< -\frac{3}{2}\).........................................
4. Nếu \(x>\frac{5}{3}\)...........................................
a.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\) ta được:
\(2a^2-b^2=ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=-b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\8a^3=-b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(vô-nghiệm\right)\\8\left(x+2\right)=-\left(x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{14}{9}\)
b.
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\)
\(\Rightarrow a^2+4b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\a^3=64b^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}65+x=65-x\\65+x=64\left(65-x\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)