K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

(x+2)^4 + (x+8)^4 = 272 

*) Cách 1: đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3 
ptrình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272 
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272 
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại) 
* t = x+5 = -1 <=> x = -6 
* t = x+5 = 1 <=> x = -4 
KL: ptrình có 2 no: x = -6 or x = -4 
~ ~ ~ 
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

4 tháng 4 2020

Đặt x+7=tx+7=t , khi đó:
(t−1)4+(t+1)4=272(t-1)4+(t+1)4=272
⇔(t2−2t+1)2+(t2+2t+1)2=272⇔(t2-2t+1)2+(t2+2t+1)2=272
⇔(t2+1)2−4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272⇔(t2+1)2-4t(t2+1)+4t2+(t2+1)2+4t(t2+1)+4t2=272
⇔2(t2+1)2+8t2=272⇔2(t2+1)2+8t2=272
⇔t4+2t2+1+4t2=136⇔t4+2t2+1+4t2=136
⇔t4+6t2−135=0⇔t4+6t2-135=0
⇔t4−9t2+15t2−135=0⇔t4-9t2+15t2-135=0
⇔t2(t2−9)+15(t2−9)=0⇔t2(t2-9)+15(t2-9)=0
⇔(t2−9)(t2+15)=0⇔(t2-9)(t2+15)=0
Vì t2+15 ≥15∀tt2+15 ≥15∀t
⇔t=±3⇔t=±3
* Với t=3t=3 , ta có: x+7=3x+7=3 ⇔x=−4⇔x=-4
* Với t=−3t=-3 , ta có: x+7=−3x+7=-3 ⇔x=−10⇔x=-10

S= { −4;−10-4;-10 }
 

4 tháng 4 2020

\(\Leftrightarrow\left(x-7+1\right)^4+\left(x-7-1\right)^4=272\)

Đặt x-7 = t, ta có :

\(\left(t+1\right)^4+\left(t-1\right)^4=272\)

\(\Leftrightarrow t^4+4t^4+6t^2+4t+1+t^4-4t^3+6t^2-4t+1-272=0\)

\(\Leftrightarrow2t^4+12t^2-270=0\)

\(\Leftrightarrow t^4+6t^2-135=0\)

\(\Leftrightarrow\left(t^2+15\right)\left(t^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t^2+15=0\\t^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t^2=-15\left(loai\right)\\t=\pm3\end{cases}}}\)

\(\cdot t=3\Leftrightarrow x-7=3\Leftrightarrow x=10\)

\(\cdot t=-3\Leftrightarrow x-7=-3\Leftrightarrow x=4\)

Vậy phương trình có tập nghiệm \(S=\left\{10;4\right\}\)

Chúc bạn học tốt nha ~~

15 tháng 1 2018

câu này xài cách đặt ẩn giống câu trên luôn

b) Đặt n = x2-3x+3 ta được

n(n+x)=2x2

n2 +nx-2x2=0

n^2-1nx+2nx-2x^2=0

n(n-x)+2x(n-x)=0

(n+2x)(n-x)=0

(x^2-3x+3+2x)(x^2-3x+3-x)=0

(x^2-x+3)(x^2-4x+3)=0

mà x^2-x+3 =0                                     

 x^2-1/2.2x+1/4-1/4+3=0                     

(x+1/2)^2+11/4 >0( loại)   

Vậy ta còn    

x^2-4x+3=0

 x^2-1x-3x+3=0                 

 (x-1)(x-3)=0

<=> x-1=0 hay x-3=0

       x=1     hay x=3

Vậy S= (1;3)

                 

                                                                

15 tháng 1 2018

a) (x -1)(x-6)(x-5)(x-2)=252

<=>( x^2-7x+6)(x^2-7x+10)=252

Đặt n=x^2-7x+6 ta được :

n(n+4)=252

n^2+4n-252=0

n^2-14n+18n-252=0

n(n-14)+18(n-14)=0

(n+18)(n-14)=0

r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2

15 tháng 1 2017

(x+2)(x+8)(x+4)(x+6)

(x^2+10x+16)(x^2+10x+24)+16

(x^2+10x+20-4)(x^2+10x+20+4)+16

(x^2+10x+20)^2-16+16

(x^2+10x+20)^2

17 tháng 4 2017

Bài b) (x-4)(x-7)(x-6)(x-5)=1680

=> (x2-11x+28)(x2-11x+30)=1680

Đặt t=x2-11x+28

=> t(t+2)=1680

=>t2+2t-1680=0

=> t2+2t+1-1681=0

=> (t+1)2-412=0

=> (t-40)(t+42)=0

=> t=40 hoặc t=-42

Bạn thế vào như câu a) để giải nhé !!!

17 tháng 4 2017

a.X=-3

b.X=-1

NV
10 tháng 11 2019

a/ Đặt \(a=x+7\) pt trở thành:

\(\left(a-1\right)^4+\left(a+1\right)^4=272\)

\(\Leftrightarrow2a^4+12a^2+2=272\)

\(\Leftrightarrow a^4+6a^2-135=0\Rightarrow\left[{}\begin{matrix}a^2=9\\a^2=-15\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+7=3\\x+7=-3\end{matrix}\right.\)

b/ Tương tự, đặt \(x-\frac{7}{2}=a\)

\(\left(a-\frac{3}{2}\right)^4+\left(a+\frac{3}{2}\right)^4=17\)

\(\Leftrightarrow2a^4+27a^2+\frac{81}{16}=17\)

Bạn tự giải tiếp

10 tháng 11 2019

Bạn ơi câu b bạn làm nốt cho mình được ko? Mình chưa hiểu lắm

1 tháng 8 2017

b)

\(\left(x+2\right)^4=y^3+x^4\)

\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)

\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)

+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)

\(\Rightarrow y^3>8x^3=\left(2x\right)^3\)              (1)

+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)

\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\)                 (2)

Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)

\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)

* Với \(y=2x+1\), thay vào biểu thức ta có :

\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)

\(\Leftrightarrow12x^2+26x+15=0\)

\(\Leftrightarrow2x\left(6x+13\right)=-15\)

Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm 

* Với \(y=2x+2\), ta có :

\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x+8=0\)

\(\Leftrightarrow x=-1\)

     Suy ra : \(y=2.\left(-1\right)+2=0\)

                     Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

1 tháng 8 2017

a)

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)

+ Với  \(xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

Thay vào biểu thức  ta đc \(x=y=0\)

+ Với \(xy+1=0\Leftrightarrow xy=-1\)

Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Thay vao biểu thức ta thấy thỏa mãn !

                 Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)