K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

Điều kiện: x khác 0

Đặt \(\frac{x^2+1}{x}=t\Rightarrow\frac{x}{x^2+1}=\frac{1}{t}\)

Khi đó: \(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)

\(\Leftrightarrow t+\frac{1}{t}=\frac{5}{2}\)

\(\Leftrightarrow\frac{t^2+1}{t}=\frac{5}{2}\Rightarrow2t^2+2=5t\)

\(\Leftrightarrow2t^2-5t+2=0\Leftrightarrow\left(2t-1\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\t=2\end{cases}}\)

Nếu \(t=\frac{1}{2}\Rightarrow\frac{x^2+1}{x}=\frac{1}{2}\Rightarrow2x^2+2=x\)

\(\Leftrightarrow2x^2-x+2=0\)

Mà \(2x^2-x+2=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\forall x\)

Nên \(x\in\varnothing\)

Nếu \(t=2\Rightarrow\frac{x^2+1}{x}=2\Rightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)(thỏa mãn ĐKXĐ)

Tập nghiệm của pt: \(S=\left\{1\right\}\)

\(\)

23 tháng 2 2019

Theo BĐT AM-GM,ta có: \(x^2+1\ge2\left|x\right|\ge2x\Rightarrow\frac{x^2+1}{x}\ge2\)

Đặt \(\frac{x^2+t}{x}=t\left(t\ge2\right)\).Bài toán trở thành:

\(t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow\left(\frac{1}{t}+\frac{t}{4}\right)+\frac{3t}{4}=\frac{5}{2}\)

Áp dụng BĐT AM-GM: \(VT\ge1+\frac{3t}{4}\ge1+\frac{6}{4}=\frac{5}{2}\)

Mà \(VT=\frac{5}{2}\) .Dấu "=" xảy ra khi \(\frac{1}{t}=\frac{t}{4}\Leftrightarrow t=2\Leftrightarrow\frac{x^2+1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x=1\)

Vậy tập hợp nghiệm của phương trình: \(S=\left\{1\right\}\)

23 tháng 3 2019

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

16 tháng 7 2016

ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)

\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)

\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)

\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)

\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)

mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)

=> 2x + 7 = 0 => x = -7/2 

                                                                              Vậy x = -7/2

22 tháng 4 2017

\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)

\(\Leftrightarrow5x-10-15x\le9+10x+10\)

\(\Leftrightarrow-20x\le29\)

\(\Leftrightarrow x\ge-1,45\)

Vậy ...........

\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)

\(\Leftrightarrow x+2-3x+9-5x+10=0\)

\(\Leftrightarrow-7x+21=0\)

\(\Leftrightarrow x=3\)

Vậy ..............

23 tháng 4 2017

 \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)

\(\Leftrightarrow5x-10-15x-9-10x-10\le0\) 

 \(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)

 \(\Leftrightarrow x\ge-\frac{29}{20}\)

7 tháng 8 2020

Bài làm:

PT:

đkxđ: \(x\ne0;x\ne2\)

Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+2x=2+x-2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)

BPT:

Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)

\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)

\(\Leftrightarrow\frac{-x}{2}\le0\)

\(\Rightarrow-x\le0\)

\(\Rightarrow x\ge0\)

7 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)

\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)

\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow-x^2-x=0\)

\(\Leftrightarrow-x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)

Vậy \(S=\left\{-1\right\}\)

b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)

\(\Leftrightarrow x+1-2x-1\le0\)

\(\Leftrightarrow-x\le0\)

\(\Leftrightarrow x\ge0\)

Vậy \(x\ge0\)

3 tháng 6 2017
  1. Điều kiện \(\hept{\begin{cases}x\ne5\\x\ne-5\end{cases}}\)\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{\left(x-5\right)}{2x\left(x+5\right)}=\frac{x+25}{2\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow\frac{2\left(x+5\right)^2-\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow x^2+30x+25=x^2+25\Leftrightarrow x=0\)
  2. Điều Kiện : \(x\ne1\)\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)\(\Leftrightarrow x^2+x+1-3x=2x^2-2x\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)so sánh điều kiện có nghiệm phương trình là : \(x=-1\)
3 tháng 6 2017

\(\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\)tu giai ra de ma

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!