\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2020

Nhận thấy \(x=0\) ko là nghiệm, pt tương đương:

\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(3x+\frac{2}{x}-1=t\)

\(\Rightarrow\frac{2}{t}-\frac{7}{t+6}=1\)

\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)

\(\Leftrightarrow t^2+11t-12=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x+2=0\\3x^2+11x+2=0\end{matrix}\right.\)

2 tháng 9 2018

\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)

Xét x=0 không phải là nghiệm của pt, ta chia cả tử và mẫu của các phân thức ở VT của pt cho x:

\(\Rightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(3x+\frac{2}{x}+2=t\). Khi đó pt mang dạng:

\(\frac{2}{t-3}-\frac{7}{t+3}=1\Leftrightarrow\frac{2t+6-7t+21}{t^2-9}=1\Leftrightarrow27-5t=t^2-9\)

\(\Leftrightarrow t^2+5t-36=0\Leftrightarrow t^2-4t+9t-36=0\)

\(\Leftrightarrow t\left(t-4\right)+9\left(t-4\right)=0\Leftrightarrow\left(t-4\right)\left(t+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\\t=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+\frac{2}{x}=2\\3x+\frac{2}{x}=-11\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2.x.\frac{1}{3}+\frac{1}{9}=-\frac{5}{9}\left(l\right)\\x^2+2.x.\frac{11}{6}+\frac{121}{36}=\frac{97}{36}\end{cases}\Rightarrow}\left(x+\frac{11}{6}\right)^2=\frac{97}{36}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{97}-11}{6}\\x=\frac{-\sqrt{97}-11}{6}\end{cases}}\). Vậy tập nghiệm của pt là \(S=\left\{\frac{\sqrt{97}-11}{6};\frac{-\sqrt{97}-11}{6}\right\}.\)

18 tháng 5 2016

a3-b3 = (a-b)(a2-ab+b2) , áp dung hằng đẳng thức rồi phân tích nha bạn 

NV
12 tháng 10 2020

a/ Giải rồi

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)

Pt trở thành:

\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)

\(\Leftrightarrow...\)

NV
12 tháng 10 2020

e/ ĐKXD: \(x>0\)

\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2=x+\frac{1}{4x}+1\)

Pt trở thành:

\(5t=2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

13 tháng 5 2016

mk bấm máy ra

x\(\approx\)0,146

13 tháng 5 2016

"Hình như" ở 2 mẫu phải cùng là số 2 hoặc -2 vì theo đó, phương trình sẽ có dạng giải được. Mình sửa lại đề theo hướng đó!

\(x=0\) không phải là nghiệm của pt

Xét \(x\ne0\), chia cả tử và mẫu 2 phân số đầu cho x, ta được:

\(pt\Leftrightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(t=3x+\frac{2}{x}\)

\(pt\rightarrow\frac{2}{t-1}-\frac{7}{t+5}=1\Leftrightarrow t\in\left\{-11;2\right\}\)

Thay lại giải ra x.

NV
9 tháng 8 2020

6.

Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)

\(\Leftrightarrow5x^2+6x+5=16x^2\)

\(\Leftrightarrow11x^2-6x-5=0\)

\(\Rightarrow x=1\)

NV
9 tháng 8 2020

4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)

5.

\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)

Đặt \(\sqrt{x^2+x+6}=t>0\)

\(t^2-\left(2x+1\right)t+6x-6=0\)

\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

10 tháng 12 2017

Ta có x2 -5x +7 = x2 -5x +25/4+ 3/4 = (x -5/2)2 +3/4 > 0 với mọi x

Tương tự x2 -4x +7 = x2 -4x +4+3  >0 với mọi x

Vậy pt đã cho luôn xác định với mọi x

Đặt  x2 -5x +7 = y suy ra: x2 -4x +7 = y+x ( đặt như vậy để dễ biến đổi)

Pt đã cho trở thành: 2x/(x+y) +3x/2y =1

Suy ra: 2x.2y +3x.(x+y)=2.(x+y).y

4xy +3xy +3x2= 2y2+2xy

3x2+5xy- 2y2=0

3x2+6xy – xy - 2y2=0 suy ra (3x – y)(x +2y)= 0 suy ra  y = 3x hoặc x =-2y

Với y =3x ta có, x2 -5x +7 =3x suy ra x2 -8x +7=0 suy ra x= 1; x =7

Với x =-2y ta có, x= -2(x2 -5x +7) suy ra 2x2 -9x +14=0

2.(x2 -4,5 x +7) =0 suy ra x2 -2.9/4 x +81/16 + 31/16=0 nên pt này vô nghiệm

Vậy pt đã cho có 2 nghiệm là x =1; x =7

12 tháng 8 2017

câu 2 đề sai

12 tháng 8 2017

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề