Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: `{(x+1>0),(x ne0):} <=> {(x> -1),(x ne 0):}`
`2/(sqrt(x+1))+1/(x sqrt(x+1)) =1/x`
`<=>(2x+1)/(x sqrt(x+1)) =1/x`
`<=>x(2x+1)=x sqrt(x+1)`
`<=>2x+1=sqrt(x+1)`
`=>(2x+1)^2=x+1`
`<=>4x^2+4x+1=x+1`
`<=>4x^2+3x=0`
`<=>x(4x+3)=0`
`<=>[(x=0\ (KTM)),(x=-3/4):}`
Thay `x=-3/4` vào PT ban đầu `=>` Không thỏa mãn.
Vậy phương trình vô nghiệm.
\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\dfrac{3}{2}x-3\)
\(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
Đặt \(t=\sqrt{2x^2-1}\left(t\ge0\right)\) \(\left(1\right)\) nên ta có phương trình:
\(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)
Ta có: \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=\left(x-3\right)^2\)
⇒ Phương trình có hai nghiệm phân biệt
\(t_1=\dfrac{2x-1}{2}\)
\(t_2=\dfrac{x+2}{2}\)
Thay lần lượt các giá trị của t vào (1) nên: \(x\in\left\{\dfrac{-1+\sqrt{6}}{2};\dfrac{2+\sqrt{60}}{7}\right\}\)
ĐKXĐ: `{(5x-1>=0),(x+2>=0),(7-x>=0):}`
`<=>{(x>=1/5),(x>=-2),(x<=7):}`
`<=>1/5 <=x<=7`
`ĐKXĐ: {(5x - 1 >= 0),(x+2 >=0),(7-x >=0):}`
`<=> {(x >= 1/5),(x>= -2),(x <=7):}`
`<=> 1/5 <= x <= 7`
binh rồi căn thì cứ chuyển bỏ dấu âm đi nó tương tự dấu giá trị tuyệt đối thôi
\(\frac{1}{3}\left(3+\frac{3}{5}x\right)-4x=20\%x-1\)
=> \(1+\frac{1}{5}x-4x=\frac{1}{5}x-1\)
=> \(1+\frac{1}{5}x-4x-\frac{1}{5}x+1=0\)
=> \(\left(1+1\right)+\left(\frac{1}{5}x-\frac{1}{5}x-4x\right)=0\)
=> \(2-4x=0\)
=> \(4x=2\)
=> \(x=\frac{1}{2}\)
Vậy : ...
P/S : Lớp 6 có phương trình ???
bạn có chắc đây là toán lớp 6 ko? mình cá chắc ko ai nhìn thấy dạng này trong toán lớp 6.
Đây đâu phải toán lớp 6. Lớp 6 chưa học mấy cái này đâu @_@
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
ĐKXĐ: `x-1 >0 <=>x>1`
`(x^2-4x+3)/(sqrt(x-1))=sqrt(x-1)`
`<=>x^2-4x+3=x-1`
`<=>x^2-5x+4=0`
`<=>x^2-x-4x+4=0`
`<=>x(x-1)-4(x-1)=0`
`<=>(x-4)(x-1)=0`
`<=> [(x=4\ (TM)),(x=1\ (KTM)):}`
``
Vậy `S={4}`.
mik có sửa lại
bạn tải lại trang nhé