Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> 2cos (3x/2)cos(x/2+pi/3)=0
<=>cos (3x/2)=0 hoặc cos (x/2+pi/3)=0
<=>3x/2=pi/2+kpi hoặc x/2+pi/3=pi/2+kpi (k thuộc z)
<=>x=pi/3+(2/3)kpi hoặc x=pi/3+2kpi (k thuộc z)
KL
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
d: cos^2x=1
=>sin^2x=0
=>sin x=0
=>x=kpi
a: =>sin 4x=cos(x+pi/6)
=>sin 4x=sin(pi/2-x-pi/6)
=>sin 4x=sin(pi/3-x)
=>4x=pi/3-x+k2pi hoặc 4x=2/3pi+x+k2pi
=>x=pi/15+k2pi/5 hoặc x=2/9pi+k2pi/3
b: =>x+pi/3=pi/6+k2pi hoặc x+pi/3=-pi/6+k2pi
=>x=-pi/2+k2pi hoặc x=-pi/6+k2pi
c: =>4x=5/12pi+k2pi hoặc 4x=-5/12pi+k2pi
=>x=5/48pi+kpi/2 hoặc x=-5/48pi+kpi/2
Pt \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{3}-x=2x+\dfrac{\pi}{3}+k2\pi\\\dfrac{\pi}{3}-x=-2x-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-k2\pi}{3}\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
1: cos(2x+pi/6)=cos(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi
=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi
=>x=pi/30+k2pi/5 hoặc x=pi-k2pi
2: sin(2x+pi/6)=sin(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi
=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi
=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi
1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)
a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos = .
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2 '
cos2 = cos2 .
Do đó
y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.
Do đó y' = 0.
\(cos\left(2x+\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow2cos\dfrac{3x}{2}.cos\left(\dfrac{x}{2}+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\dfrac{3x}{2}=0\\cos\left(\dfrac{x}{2}+\dfrac{\pi}{3}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{x}{2}+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)