Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n\ge4\)
\(\frac{n!}{\left(n-3\right)!}-\frac{n!.2}{4!.\left(n-4\right)!}=\frac{n!.3}{\left(n-2\right)!}\)
\(\Leftrightarrow n\left(n-1\right)\left(n-2\right)-\frac{n\left(n-1\right)\left(n-2\right)\left(n-3\right)}{12}=3n\left(n-1\right)\)
\(\Leftrightarrow12\left(n-2\right)-\left(n-2\right)\left(n-3\right)=36\)
\(\Leftrightarrow n^2-17n+66=0\Rightarrow\left[{}\begin{matrix}n=6\\n=11\end{matrix}\right.\)
Phạm Dương Ngọc Nhi thế thì bạn học pp này đi. Cái pp này giúp cm nhiều bài một cách dễ dàng
\(n\ge2\)
\(\frac{3.\left(n+1\right)!}{3!.\left(n-2\right)!}-\frac{3.n!}{\left(n-2\right)!}=52\left(n-1\right)\)
\(\Leftrightarrow\frac{\left(n+1\right)n\left(n-1\right)}{2}-3n\left(n-1\right)=52\left(n-1\right)\)
\(\Leftrightarrow n\left(n+1\right)-6n=104\)
\(\Leftrightarrow n^2-5n-104=0\Rightarrow\left[{}\begin{matrix}n=13\\n=-8\left(l\right)\end{matrix}\right.\)
Bài 1:
\(\left(x^{-\frac{1}{5}}+x^{\frac{1}{3}}\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x^{-\frac{1}{5}}\right)^k\left(x^{\frac{1}{3}}\right)^{10-k}=\sum\limits^{10}_{k=0}C_{10}^kx^{\frac{10}{3}-\frac{8k}{15}}\)
Trong khai triển trên có 11 số hạng nên số hạng đứng giữa có \(k=6\)
\(\Rightarrow\) Số hạng đó là \(C_{10}^6x^{\frac{10}{3}-\frac{48}{15}}=C_{10}^6x^{\frac{2}{15}}\)
Bài 2:
\(\left(1+x^2\right)^n=a_0+a_1x^2+a_2x^4+...+a_nx^{2n}\)
Cho \(x=1\Rightarrow2^n=a_0+a_1+...+a_n=1024=2^{10}\)
\(\Rightarrow n=10\)
\(\left(1+x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^{2k}\)
Số hạng chứa \(x^{12}\Rightarrow2k=12\Rightarrow k=6\) có hệ số là \(C_{10}^6\)
Bài 3:
\(\left(x-\frac{1}{4}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(-\frac{1}{4}\right)^{n-k}\)
Với \(k=n-2\Rightarrow\) hệ số là \(C_n^{n-2}\left(-\frac{1}{4}\right)^2=\frac{1}{16}C_n^2\)
\(\Rightarrow\frac{1}{16}C_n^2=31\Rightarrow C_n^2=496\Rightarrow n=32\)
Bài 4:
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^nC_n^n\)
Cho \(x=2\) ta được:
\(\left(1+2\right)^n=C_n^0+2C_n^1+2^2C_n^2+...+2^nC_n^n\)
\(\Rightarrow S=3^n\)
Bài 5:
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+xC_n^1+x^2C_n^2+...+x^{2k}C_n^{2k}+x^{2k+1}C_n^{2k+1}+...\)
Cho \(x=-1\) ta được:
\(0=C_n^0-C_n^1+C_n^2-C_n^3+...+C_n^{2k}-C_n^{2k+1}+...\)
\(\Rightarrow C_n^0+C_n^2+...+C_n^{2k}+...=C_n^1+C_n^3+...+C_n^{2k+1}+...\)
Bài 6:
\(\left(1-4x+x^2\right)^5=\sum\limits^5_{k=0}C_5^k\left(-4x+x^2\right)^k=\sum\limits^5_{k=0}\sum\limits^k_{i=0}C_5^kC_k^i\left(-4\right)^ix^{2k-i}\)
Ta có: \(\left\{{}\begin{matrix}2k-i=5\\0\le i\le k\le5\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;3\right);\left(3;4\right);\left(5;5\right)\)
Hệ số: \(\left(-4\right)^1.C_5^3C_3^1+\left(-4\right)^3C_5^4.C_4^3+\left(-4\right)^5C_5^5.C_5^5\)
Căn bản đọc đề ko hiểu ấy bạn
2 kí hiệu \(x^2P2\) và \(xP3\) mình ko biết nó là gì (ko có trong toán học :( )
Ý mình muốn hỏi kí tự "P" ở đây đại diện cho điều gì ấy?
Ta có
(1) \(\Leftrightarrow\) 1 + \(C_x^2\) + \(C_x^4\) + ... + \(C_x^{2n}\) \(\ge\) 22003 (2)
Theo công thức khai triển nhị thức newton, ta có
(1+t)2x = \(C_{2x}^0\) + \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + ... + \(C_{2x}^{2x}\)t2x
(1 - t)2x = \(C_{2x}^0\) - \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + .... + (-1)2x\(C_{2x}^{2x}\)t2x
Từ đó ta có
(1 + x)2x + (1 - t)2x = 2(1 + \(C_{2x}^2\)t2 + \(C_{2x}^4\)t4 + ... + \(C_{2x}^{2x}\)t2x)
Thay t = 1, có
1 + \(C_{2x}^2\) + \(C_{2x}^4\) + ... + \(C_{2x}^{2x}\) = 22x-1
Do đó
(2) \(\Leftrightarrow\) 22x-1 \(\ge\) 22003
\(\Leftrightarrow\) 2x - 1 \(\ge\) 2003
\(\Leftrightarrow\) x \(\ge\) 1002
Vậy với mọi số nguyên x \(\ge\) 1002 là nghiệm của (1)
(1) 1 + + + ... + 2 (2) Theo công thức khai triển nhị thức newton, ta có (1+t) = + t + t + ... + t (1 - t) = - t + t + .... + (-1) t Từ đó ta có (1 + x) + (1 - t) = 2(1 + t + t + ... + t ) Thay t = 1, có 1 + + + ... + = 2 Do đó (2) 2 2 2x - 1 2003 x 1002 Vậy với mọi số nguyên x 1002 là nghiệm của (1)
\(\Leftrightarrow\dfrac{n!}{\left(n-3\right)!\cdot3!}+2n=\dfrac{n!}{\left(n-2\right)!}+1\)
\(\Leftrightarrow\dfrac{n\left(n-1\right)\left(n-2\right)}{6}+2n=\dfrac{\left(n-1\right)\cdot n}{1}+1\)
\(\Leftrightarrow n\left(n-1\right)\left(n-2\right)+12n=6n\left(n-1\right)+6\)
\(\Leftrightarrow n^3-3n^2+2n+12n-6n^2+6n-6=0\)
=>\(n^3-9n^2+20n-6=0\)
=>n=3