\(\sqrt{-x^2+11x-24}=-x^2+11x-26\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

b, \(\sqrt{3x+7}-\sqrt{x+1}=2\)

\(\Rightarrow\sqrt{3x+7}=\sqrt{x+1}+2\)

\(\Rightarrow3x+7=\left(\sqrt{x+1}+2\right)^2\)

\(\Rightarrow3x+7=x+1+4\sqrt{x+1}+4\)

\(\Rightarrow2x+2=4\sqrt{x+1}\)

\(\Rightarrow\left(x+1\right)-2\sqrt{x+1}=0\)

\(\Rightarrow\sqrt{x+1}\left(\sqrt{x+1-2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Câu a dài ngại làm :))

NV
21 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{-x^2+11x-24}=a\ge0\) pt trở thành:

\(a=a^2-2\Leftrightarrow a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{-x^2+11x-24}=2\)

\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)

17 tháng 3 2019

Bé Của Nguyên giúp nè mẹ

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a)

\(\sqrt{(x-3)(8-x)}+x^2-11x=0\)

\(\Leftrightarrow \sqrt{11x-x^2-24}+x^2-11x=0(*)\)

Đặt \(\sqrt{11x-x^2-24}=a(a\geq 0)\Rightarrow x^2-11x=-(a^2+24)\)

Khi đó \((*)\Leftrightarrow a-(a^2+24)=0\)

\(\Leftrightarrow a^2-a+24=0\Leftrightarrow (a-\frac{1}{2})^2+\frac{95}{4}=0\) (vô lý)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b)

ĐKXĐ:.........

\(\sqrt{7x-13}-\sqrt{3x-9}=\sqrt{5x-27}\)

\(\Rightarrow (\sqrt{7x-13}-\sqrt{3x-9})^2=5x-27\)

\(\Leftrightarrow 10x-22-2\sqrt{(7x-13)(3x-9)}=5x-27\)

\(\Leftrightarrow 5(x+1)=2\sqrt{(7x-13)(3x-9)}\)

\(\Rightarrow 25(x+1)^2=4(7x-13)(3x-9)\)

\(\Leftrightarrow 25(x^2+2x+1)=84x^2-408x+468\)

\(\Leftrightarrow 59x^2-458x+443=0\)

\(\Rightarrow x=\frac{229\pm 8\sqrt{411}}{59}\) . Kết hợp với ĐKXĐ suy ra \(x=\frac{229+8\sqrt{411}}{59}\)

28 tháng 11 2019

ĐKXĐ:...

\(\Leftrightarrow\sqrt{-x^2+11x-24}=-x^2+11x-26\) \(\left(-x^2+11x-26\ge0\right)\)

\(\sqrt{-x^2+11x-24}=t\left(t\ge0\right)\Rightarrow t^2=-x^2+11x-24\)

\(\Rightarrow t^2-2=-x^2+11x-26\)

\(\Rightarrow t=t^2-2\Leftrightarrow t^2-t-2=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow-x^2+11x-24=4\Leftrightarrow...\)

Bạn giải nốt và đối chiếu vs ĐKXĐ

NV
16 tháng 8 2020

8.

ĐKXĐ: \(x\ge\frac{2}{3}\)

\(\Leftrightarrow\frac{9\left(x+3\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\frac{9}{\sqrt{4x+1}+\sqrt{3x-2}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=9\)

\(\Leftrightarrow\sqrt{4x+1}-5+\sqrt{3x-2}-4=0\)

\(\Leftrightarrow\frac{4\left(x-6\right)}{\sqrt{4x+1}+5}+\frac{3\left(x-6\right)}{\sqrt{3x-2}+4}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{4}{\sqrt{4x+1}+5}+\frac{3}{\sqrt{3x-2}+4}\right)=0\)

\(\Leftrightarrow x=6\)

NV
16 tháng 8 2020

6.

ĐKXD: ...

\(\Leftrightarrow2\left(x^2-6x+9\right)+\left(x+5-4\sqrt{x+1}\right)=0\)

\(\Leftrightarrow2\left(x-3\right)^2+\frac{\left(x-3\right)^2}{x+5+4\sqrt{x+1}}=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(2+\frac{1}{x+5+4\sqrt{x+1}}\right)=0\)

\(\Leftrightarrow x=3\)

7.

\(\sqrt{x-\frac{1}{x}}-\sqrt{2x-\frac{5}{x}}+\frac{4}{x}-x=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-\frac{1}{x}}=a\ge0\\\sqrt{2x-\frac{5}{x}}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=\frac{4}{x}-x\)

\(\Rightarrow a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

\(\Leftrightarrow a=b\Leftrightarrow x-\frac{1}{x}=2x-\frac{5}{x}\)

\(\Leftrightarrow x=\frac{4}{x}\Rightarrow x=\pm2\)

Thế nghiệm lại pt ban đầu để thử (hoặc là bạn tìm ĐKXĐ từ đầu)

2 tháng 10 2019

cách giải á bạn

26 tháng 2 2019

a/ ĐKXĐ \(x\ge-\frac{3}{2}\)

Ta thấy cả 2 vế đều là số không âm nên ta bình phương 2 vế được

\(3x+5+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)( Điều kiện \(x\le-\frac{4}{3}\))

Tiếp tục bình phương rồi rút gọn ta được

\(x^2-4x-8\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le2-2\sqrt{3}\\x\ge2+2\sqrt{3}\end{cases}}\)

Kết hợp tất cả ta được

\(-\frac{3}{2}\le x\le2-2\sqrt{3}\)

26 tháng 2 2019

Câu b với d cũng chỉ cần bình phương là ra

c/ Điều kiện: \(3\le x\le8\)

Đặt \(\sqrt{\left(x-3\right)\left(8-x\right)}=a\ge0\)

Thì bài toán thành

\(a-a^2+2>0\)

\(\Leftrightarrow-1\le a\le2\)

Tới đây thì đơn giản rồi

3 tháng 5 2017

a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.

3 tháng 5 2017

b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)