Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)=\(\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+2-\sqrt{a-2}=4\) (do2<=a<=4)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
Khi đó phương trình đã cho tương đương với: \(4\left(\sqrt{x+2}-2\right)+\left(\sqrt{22-3x}-4\right)=x^2-4\)
\(\Leftrightarrow\frac{4\left(x-2\right)}{\sqrt{x+2}-2}+\frac{3\left(2-x\right)}{\sqrt{22-3x}+4}=\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}=0\end{cases}\left(1\right)}\)
Xét hàm số f(x)=\(x+2-\frac{4}{\sqrt{x+2}-2}+\frac{3}{\sqrt{22-3x}+4}\left(-2\le x\le\frac{10}{3}\right)\)
Ta có \(f'\left(x\right)=1+\frac{2}{\sqrt{x+2}+\left(\sqrt{x+2}-2\right)}+\frac{9}{\sqrt{22-3x}\left(\sqrt{22-3x}+4\right)}>0\)với mọi \(x\in\left(-2;\frac{22}{3}\right)\)Do đó hàm f(x) đồng biến trên \(x\in\left[-2;\frac{22}{3}\right]\)
Mặt khác ta thấy f(-1)=0 nên x=-1 là nghiệm duy nhất của phương trình (1)
Vậy x=2;x=-1 là nghiệm của phương trình