Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\)
=> \(3x+4-2\sqrt{\left(2x+1\right)\left(x+3\right)}=3x-2-2\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(3-\sqrt{\left(2x+1\right)\left(x+3\right)}=-\sqrt{\left(x-1\right)\left(2x-1\right)}\)
=> \(9+\left(2x+1\right)\left(x+3\right)-6\sqrt{\left(2x+1\right)\left(x+3\right)}=\left(x-1\right)\left(2x-1\right)\)
<=> \(2x^2+7x+12-6\sqrt{\left(x+3\right)\left(2x+1\right)}=2x^2-3x+1\)
<=> \(10x+11=6\sqrt{\left(x+3\right)\left(2x+1\right)}\)
=> \(\left(10x+11\right)^2=36\left(x+3\right)\left(2x+1\right)\)
<=> \(100x^2+220x+121=36\left(2x^2+7x+3\right)\)
<=> \(28x^2-32x+13=0\)
<=> \(196x^2-224x+91=0\)
<=> \(\left(14x-8\right)^2+27=0\) (*)
Có: \(\left(14x-8\right)^2+27\ge27>0\)
=> PT (*) VÔ NGHIỆM.
VẬY PT \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\) VÔ NGHIỆM.
đk x≥≥3
ta có √2x+1=√x+√x−32x+1=x+x−3
do cả hai vế lớn hơn nên cả bình phương cả 2 vế
pt<=> 2x+1=x+x-3+2√x(x−3)x(x−3)<=> 2=√x(x−3)x(x−3)
<=> 4=x^2-3x
<=>x^2-3x-4=0
<=> (x-4)(x+1)=0
<=> x=4(do x≥3≥3
Vậy S={4}
a) câu a bạn cho 2 cái căn ở cuối làm j thế
hiệu bằng 0 rồi mà?
1 ) đặt ẩn phụ
căn(x+4) = a
căn(4-x) = b
=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x
Thay vào phương trình giải rất dễ
2) điều kiện xác định " x lớn hơn hoặc = 1
từ ĐKXĐ => vế trái lớn hơn hoặc = 1
=> 2 - x lớn hơn hoặc = 1
=> x nhỏ hơn hoặc = 1
kết hợp ĐKXĐ => x = 1
3) mk chưa biết làm
Đầu tiên ta đặt dk 2x^2 - 2x >=0 <=> x<=0 và x>=1
x^4 -2x^3+x - căn(2x^2-2x)=0
<=> x(x^3-2x^2+1) - căn[2x(x-1)]=0
<=>x[(x^3-x^2)-(x^2-1)] - căn[2x(x-1)]=0
<=>x[x^2(x-1)-(x-1)(x+1)] - căn[2x(x-1)]=0
<=>x(x-1)(x^2-x-1) - căn[2x(x-1)]=0
<=>x(x-1)[x(x-1)-1] - căn[2x(x-1)]=0
<=>[x(x-1)]^2 -x(x-1) - căn[2x(x-1)]=0(*)
Nhân cả hai vế của pt(*) cho 4 ta được:
4[x(x-1)]^2 -4x(x-1) - 4căn[2x(x-1)]=0(**)
Đến đây ta đặt t=căn[2x(x-1)] điều kiện t>=0 ta được pt sau
t^4 -2t^2 -4t =0
<=> t(t^3 - 2t -4)=0
<=> t=0 hoặc t^3-2t -4=0
với t=0 thế vào t= căn[2x(x-1)]=0 => x=0 hoặc x=1
với t^3-2t-4=0 ta thấy pt này có một nghiệm t=2
<=> (t-2)(t^2+2t+2)=0(ở đây ta thực hiện chia t^3-2t-4 cho t-2)
<=>t=2
thế t=2 vào t=căn[2x(x-1)]=2 ta tìm được x=-1 hoặc x=2
thỏa mãn dk x<=0 và x>=1
Vậy pt đã cho có các nghiệm sau x=0; x=1; x=-1; x=2
Kết luận: x=0; x=1; x=-1; x=2
a) b) c) bạn bình phương 2 vế
d) pt <=>3-x=x+3+2.căn(x+2)
<=> -2x=2.căn (x+2)
<=>-x=căn (x+2) (x<=0)
<=> x^2=x+2
<=>x=-1 hoặc x=2
Xong bạn xét ĐKXĐ
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }
a: \(3+\sqrt{2x-3}=x\)
=>\(\sqrt{2x-3}=x-3\)
=>x>=3 và 2x-3=(x-3)^2
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x>=3 và (x-2)(x-6)=0
=>x>=3 và \(x\in\left\{2;6\right\}\)
=>x=6
b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)
=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)
=>\(-\sqrt{x}-3=-4\)
=>\(-\sqrt{x}=-1\)
=>căn x=1
=>x=1(nhận)
c: \(\sqrt{2x+1}-x+1=0\)
=>\(\sqrt{2x+1}=x-1\)
=>x>=1 và (x-1)^2=2x+1
=>x>=1 và x^2-2x+1=2x+1
=>x>=1 và x^2-4x=0
=>x(x-4)=0 và x>=1
=>x=4