K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(3+\sqrt{2x-3}=x\)

=>\(\sqrt{2x-3}=x-3\)

=>x>=3 và 2x-3=(x-3)^2

=>x>=3 và x^2-6x+9=2x-3

=>x>=3 và x^2-8x+12=0

=>x>=3 và (x-2)(x-6)=0

=>x>=3 và \(x\in\left\{2;6\right\}\)

=>x=6

b: \(\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)-2x=-4\)

=>\(2x-3\sqrt{x}+2\sqrt{x}-3-2x=-4\)

=>\(-\sqrt{x}-3=-4\)

=>\(-\sqrt{x}=-1\)

=>căn x=1

=>x=1(nhận)

c: \(\sqrt{2x+1}-x+1=0\)

=>\(\sqrt{2x+1}=x-1\)

=>x>=1 và (x-1)^2=2x+1

=>x>=1 và x^2-2x+1=2x+1

=>x>=1 và x^2-4x=0

=>x(x-4)=0 và x>=1

=>x=4

16 tháng 8 2020

pt <=>     \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\)

=>     \(3x+4-2\sqrt{\left(2x+1\right)\left(x+3\right)}=3x-2-2\sqrt{\left(x-1\right)\left(2x-1\right)}\)

=>     \(3-\sqrt{\left(2x+1\right)\left(x+3\right)}=-\sqrt{\left(x-1\right)\left(2x-1\right)}\)

=>     \(9+\left(2x+1\right)\left(x+3\right)-6\sqrt{\left(2x+1\right)\left(x+3\right)}=\left(x-1\right)\left(2x-1\right)\)

<=>  \(2x^2+7x+12-6\sqrt{\left(x+3\right)\left(2x+1\right)}=2x^2-3x+1\)

<=>   \(10x+11=6\sqrt{\left(x+3\right)\left(2x+1\right)}\)

=>   \(\left(10x+11\right)^2=36\left(x+3\right)\left(2x+1\right)\)

<=>  \(100x^2+220x+121=36\left(2x^2+7x+3\right)\)

<=>  \(28x^2-32x+13=0\)

<=>  \(196x^2-224x+91=0\)

<=>   \(\left(14x-8\right)^2+27=0\)      (*)

Có:  \(\left(14x-8\right)^2+27\ge27>0\)

=> PT (*) VÔ NGHIỆM.

VẬY PT    \(\sqrt{2x+1}-\sqrt{x+3}=\sqrt{x-1}-\sqrt{2x-1}\)     VÔ NGHIỆM.

16 tháng 8 2020

đk x3

ta có 2x+1=x+x32x+1=x+x−3

do cả hai vế lớn hơn nên cả bình phương cả 2 vế

pt<=> 2x+1=x+x-3+2x(x3)x(x−3)<=> 2=x(x3)x(x−3)

<=> 4=x^2-3x

<=>x^2-3x-4=0

<=> (x-4)(x+1)=0

<=> x=4(do x3≥3

Vậy S={4}

20 tháng 10 2021

\(ĐK:x\ge2\)

\(\sqrt{x+1}=\sqrt{x-2}+1\)

\(\Leftrightarrow x+1=x-1+2\sqrt{x-2}\)

\(\Leftrightarrow2\sqrt{x-2}=2\Leftrightarrow x=3\)

16 tháng 8 2020

acâu a bạn cho 2 cái căn ở cuối làm j thế

hiệu bằng 0 rồi mà?

9 tháng 3 2018

1 ) đặt ẩn phụ 

căn(x+4) = a

căn(4-x) = b

=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x 

Thay vào phương trình giải rất dễ

2) điều kiện xác định " x lớn hơn hoặc = 1

từ ĐKXĐ => vế trái lớn hơn hoặc = 1

=> 2 - x lớn hơn hoặc = 1

=> x nhỏ hơn hoặc = 1

kết hợp ĐKXĐ => x = 1

3) mk chưa biết làm

13 tháng 10 2018

Đầu tiên ta đặt dk 2x^2 - 2x >=0 <=> x<=0 và x>=1 
x^4 -2x^3+x - căn(2x^2-2x)=0 
<=> x(x^3-2x^2+1) - căn[2x(x-1)]=0 
<=>x[(x^3-x^2)-(x^2-1)] - căn[2x(x-1)]=0 
<=>x[x^2(x-1)-(x-1)(x+1)] - căn[2x(x-1)]=0 
<=>x(x-1)(x^2-x-1) - căn[2x(x-1)]=0 
<=>x(x-1)[x(x-1)-1] - căn[2x(x-1)]=0 
<=>[x(x-1)]^2 -x(x-1) - căn[2x(x-1)]=0(*) 
Nhân cả hai vế của pt(*) cho 4 ta được: 
4[x(x-1)]^2 -4x(x-1) - 4căn[2x(x-1)]=0(**) 
Đến đây ta đặt t=căn[2x(x-1)] điều kiện t>=0 ta được pt sau 
t^4 -2t^2 -4t =0 
<=> t(t^3 - 2t -4)=0 
<=> t=0 hoặc t^3-2t -4=0 
với t=0 thế vào t= căn[2x(x-1)]=0 => x=0 hoặc x=1 
với t^3-2t-4=0 ta thấy pt này có một nghiệm t=2 
<=> (t-2)(t^2+2t+2)=0(ở đây ta thực hiện chia t^3-2t-4 cho t-2) 
<=>t=2 
thế t=2 vào t=căn[2x(x-1)]=2 ta tìm được x=-1 hoặc x=2 
thỏa mãn dk x<=0 và x>=1 
Vậy pt đã cho có các nghiệm sau x=0; x=1; x=-1; x=2 
Kết luận: x=0; x=1; x=-1; x=2

16 tháng 11 2019

a) b) c) bạn bình phương 2 vế

d) pt <=>3-x=x+3+2.căn(x+2)

<=> -2x=2.căn (x+2)

<=>-x=căn (x+2) (x<=0)

<=> x^2=x+2

<=>x=-1 hoặc x=2

Xong bạn xét ĐKXĐ

16 tháng 11 2019

giải giúp tớ a , b,c luôn đi cậu :<

1 tháng 8 2018

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }