K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2019

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 4 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z)

NV
27 tháng 9 2020

3.

\(4sinx.cosx-2sinx+1-2cosx=0\)

\(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

4.

\(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\)

Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
27 tháng 9 2020

5.

\(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

6.

\(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\)

\(\Leftrightarrow14sin^2x-5sinx-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

e/

\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

d/

\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)

\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
25 tháng 10 2020

1.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx+\frac{\sqrt{2}}{2}=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)+\frac{\sqrt{2}}{2}=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=-\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k2\pi\\x=\frac{17\pi}{12}+k2\pi\end{matrix}\right.\)

2.

\(\Leftrightarrow\frac{3}{\sqrt{13}}sin2x+\frac{2}{\sqrt{13}}cos2x=\frac{3}{\sqrt{13}}\)

Đặt \(\frac{3}{\sqrt{13}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow sin2x.cosa+cos2x.sina=cosa\)

\(\Leftrightarrow sin\left(2x+a\right)=sin\left(\frac{\pi}{2}-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+a=\frac{\pi}{2}-a+k2\pi\\2x+a=\frac{\pi}{2}+a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}-a+k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
25 tháng 10 2020

3.

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}\)

\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{3}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{12}+k2\pi\\x=\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)

4.

Câu này giống hệt câu a

NV
15 tháng 8 2020

4.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=cos2x\)

\(\Leftrightarrow1-\frac{1}{2}sin^22x=cos2x\)

\(\Leftrightarrow1+1-sin^22x=2cos2x\)

\(\Leftrightarrow1+cos^22x=2cos2x\)

\(\Leftrightarrow\left(cos2x-1\right)^2=0\)

\(\Leftrightarrow cos2x=1\)

\(\Leftrightarrow2x=k2\pi\)

\(\Rightarrow x=k\pi\)

NV
15 tháng 8 2020

3.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{2}\left(2sinx.cosx\right)^2=\frac{1}{2}\)

\(\Leftrightarrow1-sin^22x=0\)

\(\Leftrightarrow cos^22x=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là? 2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là? 3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\) 4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là? 5. Nghiệm...
Đọc tiếp

1. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}\) sin2x - 2cos2x = 4 là?

2. Pt: 6sin2x + \(7\sqrt{3}\) sin2x - 8cos2x = 6 có các nghiệm là?

3. Pt: sinx + \(\sqrt{3}\) cosx = 1 có các nghiệm dạng x = \(\alpha\)+ k2\(\pi\); x = \(\beta\) + k2\(\pi\) ; \(-\pi< \alpha,\beta< \pi\) , k \(\varepsilon Z\). Tính \(\alpha.\beta\)

4. Số điểm biểu diễn nghiệm của pt: cos2x - \(\sqrt{3}sin2x\) = 1 + 2sin2x trên đường tròn lượng giác là?

5. Nghiệm dương nhỏ nhất của pt: 4sin2x + \(3\sqrt{3}sin2x-2cos^2x=4\) là?

6. Pt: \(cos2x+sinx=\sqrt{3}\left(cosx-sin2x\right)\) có bn nghiệm \(x\varepsilon\left(0;2020\right)\)?

7. Pt: \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2+\sqrt{3}cosx=2\) có nghiệm dương nhỏ nhất là a và nghiệm âm lớn nhất là b thì a + b là?

8. Pt: \(3sin3x+\sqrt{3}cos9x=2cosx+4sin^33x\) có số nghiệm trên \(\left(0;\frac{\pi}{2}\right)\) là?

9. Tìm m để pt: \(sin2x+cos^2x=\frac{m}{2}\) có nghiệm là?

10. Cho pt: \(\left(m^2+2\right)cos^2x-2msin2x+1=0\). Để pt có nghiệm thì giá trị thích hợp của tham số m là?

11. Tìm tập giá trị lớn nhất, nhỏ nhất của hs sau: \(y=\frac{sin^22x+3sin4x}{2cos^22x-sin4x+2}\)

11
16 tháng 8 2020

Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?

NV
16 tháng 8 2020

Vì mình lấy giá trị nguyên bạn

Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)

\(\Rightarrow-0,25< k< 321,243\) (1)

Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)

NV
18 tháng 9 2020

23.

\(tan^2x\ge0\Rightarrow y\le2\)

\(y_{max}=2\) khi \(tanx=0\)

\(y_{min}\) không tồn tại

24.

\(-1\le cosx\le1\Rightarrow0< 1+cosx\le2\)

\(\Rightarrow y\ge\frac{1}{2}\)

\(y_{min}=\frac{1}{2}\) khi \(cosx=1\)

\(y_{max}\) ko tồn tại

NV
18 tháng 9 2020

19.

\(y=\sqrt{5-\frac{1}{2}\left(2sinxcosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)

\(0\le sin^22x\le1\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)

\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)

\(y_{max}=\sqrt{5}\) khi \(sin^22x=0\)

21.

\(y=2sin^2x-\left(1-2sin^2x\right)=4sin^2x-1\)

\(0\le sin^2x\le1\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sin^2x=0\)

\(y_{max}=3\) khi \(sin^2x=1\)

28 tháng 6 2018

giúp mk với