Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) 3a - 3b + a2 -2ab +b2
= 3(a-b) + (a-b)2
= (a-b)(3+a-b)
h)a2 +2ab + b2 - 2a -2b +1
= (a+b)2 -2(a+b) +1
=(a+b-1)2
g,3a−3b+\(a^2\)−2ab+\(b^2\)
=3(a-b)+(a-b)
=(a-b)(a-b+3)
h, \(a^2\)+2ab+\(b^2\)−2a−2b+1
=\(\left(a+b\right)^2\)-2(a+b)+1
=(a+b-1)
biến đổi vế trái : a. \(\left(a+b\right)^2=a^2+2ab+B^2=VP\)
b. \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=VP\)
c. \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=VP\)
xem 7 hằng đẳng thức đáng nhớ
a)\(=\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\)
b)\(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2b+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b-3ab^2-b^3\)
c)\(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\)
\(=a^2+ab+ac+ab+b^2+bc+ac+cb+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac\)
Tư Tưởng chủ đạo là biến đổi tương đương bạn nhé
\(\frac{2ab}{a^2+4b^2}+\frac{b^2}{3a^2+2b^2}\le\frac{3}{5}\)
\(\Leftrightarrow\frac{2}{5}-\frac{2ab}{a^2+4b^2}+\frac{1}{5}-\frac{b^2}{3a^2+2b^2}\ge0\)
\(\Leftrightarrow\frac{2a^2-10ab+8b^2}{a^2+4b^2}+\frac{3a^2-3b^2}{3a^2+2b^2}\ge0\)
\(\Leftrightarrow\frac{2\left(a-b\right)\left(a-4b\right)}{a^2+4b^2}+\frac{3\left(a-b\right)\left(a+b\right)}{3a^2+2b^2}\ge0\)
\(\Leftrightarrow\left(a-b\right)\left[2\left(a-4b\right)\left(3a^2+2b^2\right)+3\left(a+b\right)\left(a^2+4b^2\right)\right]\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(9a^3-21a^2b+16ab^2-4b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(3a-2b\right)^2\ge0\) (luôn đúng)
Như vậy ta có đpcm
Đẳng thức xảy ra \(\Leftrightarrow\) a = b hoặc \(a=\frac{2}{3}b\)
\(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}=2\)
\(\Rightarrow\frac{3a+1-2}{3a+1}+\frac{a+3-6}{a+3}=2\)
\(\Rightarrow1-\frac{2}{3a+1}+1-\frac{6}{a+3}=2\)
\(\Rightarrow2-\left(\frac{2}{3a+1}+\frac{6}{a+3}\right)=2\)
\(\Rightarrow\frac{2}{3a+1}+\frac{6}{a+3}=0\)
\(\Rightarrow\frac{2}{3a+1}=\frac{-6}{a+3}\)
\(\Rightarrow2\left(a+3\right)=-6\left(3a+1\right)\)
\(\Rightarrow2a+6=-18a-6\)
\(\Rightarrow2a+18a=-6-6\)
\(\Rightarrow20a=-12\)
\(\Rightarrow a=\frac{-3}{5}\)
Vậy \(a=\frac{-3}{5}\)
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)