![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2018};-\dfrac{2}{2019};-\dfrac{1}{505};\dfrac{-5}{2021}\right\}\)
Ta có: \(\dfrac{1}{2018x+1}-\dfrac{1}{2019x+2}=\dfrac{1}{2020x+4}-\dfrac{1}{2021x+5}\)
\(\Leftrightarrow\dfrac{2019x+2-2018x-1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{2021x+5-2020x-4}{\left(2020x+4\right)\left(2021x+5\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}\)
\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(2018x+1\right)\left(2019x+2\right)=\left(2020x+4\right)\left(2021x+5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4074342x^2+6055x+2=4082420x^2+18184x+20\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\-8078x^2-12129x-18=0\end{matrix}\right.\)
Ta có: \(-8078x^2-12129x-18=0\)(2)
\(\Delta=\left(-12129\right)^2-4\cdot\left(-8078\right)\cdot\left(-18\right)=146531025\)
Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{12129-12105}{2\cdot\left(-8078\right)}=\dfrac{-6}{4039}\left(nhận\right)\\x_2=\dfrac{12129+12105}{2\cdot\left(-8078\right)}=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{-6}{4039};\dfrac{-3}{2}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
\(=x^{2019}-2019x^{2018}-x^{2018}+2019x^{2017}+x^{2017}\)
\(-2019x^{2016}-x^{2016}+...+2019x+x-2020\)
\(=x^{2018}\left(x-2019\right)-x^{2017}\left(x-2019\right)+x^{2016}\left(x-2019\right)\)
\(+...-x\left(x-2019\right)+\left(x-2019\right)-1\)
\(=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,x2-8x=0
⇔x(x-8)=0
⇔x=0 hoặc x-8=0
⇔x=0 hoặc x=8
Vậy tập nghiệm của phương trình đã cho là:S={0;8}
b,x2-2020x+2019=0
⇔x2-2019x-x+2019=0
⇔x(x-2019)-(x-2019)=0
⇔(x-2019)(x-1)=0
⇔x-2019=0 hoặc x-1=0
⇔x=2019 hoặc x=1
Vậy tập nghiệm của phương trình đã cho là:S={2019;1}
c,(2x-1)2-(x+5)2=0
⇔(2x-1-x-5)(2x-1+x+5)=0
⇔(x-6)(3x+4)=0
⇔x-6=0 hoặc 3x+4=0
⇔x=6 hoặc x=\(\frac{-4}{3}\)
Vậy tập nghiệm của phương trình đã cho là:S={6;\(\frac{-4}{3}\)}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2019x=2020\)
\(x\left(x+2019\right)=2020\)
Tách 2020 ra 2 thừa số có hiệu là 2019: 2020 = 1*2020 = (-1) * (-2020)
Mà thừa số x luôn bé hơn thừa số x + 2019
\(\Rightarrow x\in\left\{1;-2020\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\left(x-2018\right)-2019x+2018\cdot2019=0\)
\(x\left(x-2018\right)-2019\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(x-2019\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\x-2019=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(3\left(2x-x\right)=5x+1\)
\(\Leftrightarrow6x-3x=5x+1\)
\(\Leftrightarrow6x-3x-5x=1\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)
b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)
\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)
\(\Leftrightarrow x+2022=0\)
\(\Leftrightarrow x=-2022\)
\(2020x\left(x+1\right)-2019x-2019=0\)
\(\Leftrightarrow2020x\left(x+1\right)-2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2020x-2019\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2020x-2019=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{2019}{2020}\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{-1;\frac{2019}{2020}\right\}\)
2020x( x + 1 ) - 2019x - 2019 = 0
<=> 2020x( x + 1 ) - 2019( x + 1 ) = 0
<=> ( x + 1 )( 2020x - 2019 ) = 0
<=> x = -1 hoặc x = 2019/2020
Vậy tập nghiệm của phương trình là S = { -1 ; 2019/2020 }