Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
Câu 1a thì được nè :v
( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2
⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2
⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)
Đặt : 12x + 1 = a , ta có :
( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48
⇔ ( a2 + 3a)( a2 + 3a +2) = 48
Đặt : a3 + 3a = t , ta có :
t( t +2) =48
⇔ t2 + 2t - 48 = 0
⇔ t2 - 6t + 8t - 48 = 0
⇔ t( t - 6) + 8( t - 6) = 0
⇔ ( t - 6)( t + 8) = 0
⇔ t = 6 hoặc t = -8
Tự thế vào mà tìm a sau đó suy ra x nha
Bài 1:
b)
HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Lấy PT(1) trừ 2PT(2) thu được:
\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)
\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)
Thay vào thu được \(\frac{x}{y}=-1\)
Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:
\(X^2-2X-1=0\)
\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)
Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)
Câu 1
a Biểu thức A = \(\sqrt{x-1}+\sqrt{3-x}\) có nghĩa
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\Leftrightarrow1\le x\le3\)
Vậy biểu thức A có nghĩa khi \(1\le x\le3\)
b) \(\dfrac{1}{3-\sqrt{5}}+\dfrac{1}{\sqrt{5}+1}\)
\(=\dfrac{3+\sqrt{5}}{9-5}-\dfrac{\sqrt{5}-1}{5-1}=\dfrac{3+\sqrt{5}}{4}-\dfrac{\sqrt{5}-1}{4}=\dfrac{3+\sqrt{5}-\sqrt{5}+1}{4}=\dfrac{4}{4}=1\)
Câu 2:
a) \(\left(x-3\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là: S ={5; 1}
b) ĐKXĐ: \(x\ne-\dfrac{1}{2}\)
\(\dfrac{x-1}{2x+1}< \dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x-1}{2x+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)-\left(2x+1\right)}{2\left(2x+1\right)}< 0\)
\(\Leftrightarrow\dfrac{2x-2-2x-1}{2\left(2x+1\right)}< 0\)
\(\Leftrightarrow\dfrac{-3}{2\left(2x+1\right)}< 0\)
Vì -3 < 0 \(\Rightarrow2\left(2x+1\right)>0\)
\(\Rightarrow2x+1>0\)
\(\Rightarrow x>-\dfrac{1}{2}\)
Vậy bất phương trình có nghiệm là: \(x>-\dfrac{1}{2}\)
Đáp án D