K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2016

\(\begin{cases}x^5-3x^4+2x^2-2x+2\ge0\\x^4-2x^3-x+2=0\\x^2-3x+2=0\\\left(x^2-1\right)\left(x-2\right)=0\end{cases}\)  (*)

 

\(x^5-3x^4+2x^2-2x+2\ge0\) (1)

\(x^4-2x^3-x+2=0\) (2)

\(x^2-3x+2=0\)  (3)

\(\left(x^2-1\right)\left(x-2\right)=0\)  (4)

Từ 

\(x^2-3x+2=0\)  (3) \(\Leftrightarrow\) x=1 hoặc x=2

x=1 thỏa mãn tất cả các phương trình, bất phương trình còn lại nên là nghiệm của hệ

x=2 không thỏa mãn (1) nên x=2 không là nghiệm của hệ

Vậy hệ phương trình (*) có nghiệm duy nhất là x=1

 

 

5 tháng 4 2021

undefined

1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

2: \(\Leftrightarrow-4< =2x-1< =4\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)

9 tháng 5 2016

Đặt \(y=2x^2-3x+1=2\left(x-\frac{3}{4}\right)^2-\frac{1}{8}\)

Điều kiện \(y\ge\frac{1}{8}\) (*)

Ta được hệ phương trình 2  ẩn \(x,y\)

\(\begin{cases}y=2x^2-3x+1\\x=2y^2-3y+1\end{cases}\) (a)

Trừ từng vế của hệ phương trình (a) ta được :

\(y-x=2\left(x^2-y^2\right)-3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x+y-1\right)\)

                                               \(\Leftrightarrow\begin{cases}y=1-\frac{\sqrt{2}}{2}\\y=1+\frac{\sqrt{2}}{2}\end{cases}\)

Cả 2 nghiệm này đều thỏa mãn điều kiện (*)

Do \(x=y\) nên ta được 2 nghiệm \(x\) tương ứng là \(x=1-\frac{\sqrt{2}}{2};x=1+\frac{\sqrt{2}}{2}\)

Thay \(x=1-y\) vào phương trình thứ 2 của hệ (a) ta được :

\(1-y=2y^2-3t+1\Leftrightarrow2y^2-2y=0\Leftrightarrow\left[\begin{array}{nghiempt}y=0\\y=1\end{array}\right.\)

Hai nghiệm này cùng thỏa mãn điều kiện (*)

Do \(x=1-y\) nên ta được 2 nghiệm \(x\) tương ứng \(x=1;x=0\)

Vậy phương trình có 4 nghiệm :

\(x=1;x=0;x=1-\frac{\sqrt{2}}{2};x=1+\frac{\sqrt{2}}{2}\)

11 tháng 5 2016

nhận thấy vế trái có dạng là một phương trình bậc hai luôn rồi,ta chỉ cần phân tích nó thành tích của 2 cái nhân với nhau,cụ thể là 

(2x^2-3x+1-1)(2(x^2-3x+1)-1)=x.

(2x^2-3x)(4x^2-6x+1)=x

x(2x-3)(4x^2-6x+1)=x

vậy x=0 hoặc (2x-3)(4x^2-6x+1)=1. bạn bấm máy tính nữa là xong.

18 tháng 9 2023

loading...  

18 tháng 9 2023

a) \(\left(x+1\right)\left(x-1\right)\left(3x-6\right)>0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-1< x< 1\\x>2\end{matrix}\right.\)

b) \(\dfrac{x+3}{x-2}\le0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow-3\le x< 2\)

d) \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)

\(\Leftrightarrow\dfrac{2x-5}{3x+2}-\dfrac{3x+2}{2x-5}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5\right)^2-\left(3x+2\right)^2}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{\left(2x-5+3x+2\right)\left(2x-5-3x-2\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

\(\Leftrightarrow\dfrac{-\left(5x-3\right)\left(x+7\right)}{\left(3x+2\right)\left(2x-5\right)}< 0\)

Lập bảng xét dấu ta được kết quả :

\(Bpt\Leftrightarrow\left[{}\begin{matrix}-7< x< -\dfrac{2}{3}\\\dfrac{5}{3}< x< \dfrac{5}{2}\end{matrix}\right.\)

30 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...