K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Đặt \(\hept{\begin{cases}x+5=y\\x-4=z\end{cases}}\)

\(\Leftrightarrow2x+1=y+z\)

=> PT có dạng

\(y^4+z^4=\left(y+z\right)^4\)

\(\Rightarrow y^4+z^4=y^4+4y^3z+6y^2z^2+4yz^3+z^4\)

\(\Leftrightarrow2yz\left(2y^2+3yz+2z^2\right)=0\)

\(\Leftrightarrow2\left(x+5\right)\left(x-4\right)\left(7x^2+7x+22\right)=0\)(1)

Dễ thấy  \(7x^2+7x+22=7\left(x+\frac{1}{2}\right)^2+\frac{81}{4}>0\)

Từ \(2\left(x+5\right)\left(x-4\right)\left(7x^2+7x+22\right)=0\)(1)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=4\end{cases}}\)

Vậy .....

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

26 tháng 1 2017

 a. 5-(x-6)=4(3-2x)

<=>5-x+6 = 12-8x

<=>-x+8x =-5-6+12

<=>7x=1

<=>x=\(\frac{1}{7}\)

Vậy phương trình có nghiệm là S= ( \(\frac{1}{7}\))

c.7 -(2x+4) =-(x+4)

<=> 7-2x-4=-x-4

<=>-2x+x= -7+4-4

<=> -x = -7

<=> x=7

Vậy phương trình có nghiệm là S=(7)

13 tháng 2 2017

CHỊU!@@@@@@@@@@@@

6 tháng 2 2021

\(4x^2-4x-5\left|2x-1\right|-5=0\)

\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)

\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)

\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)

TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)

\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)

\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)

TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)

\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)

\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

13 tháng 7 2017

\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)

\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)

\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)

\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)

\(\Leftrightarrow-16x-8=0\)

\(\Leftrightarrow-8\left(2x-1\right)=0 \)

\(\Rightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy   \(x=\frac{1}{2}\)

10 tháng 1 2017

Theo bài ra , ta có : 

\(\left(x-7\right)^4+\left(x-8\right)^4=\left(15-2x\right)^4\)

\(\Leftrightarrow x^4-28x^3+294x^2-1372x+2401+x^4-32x^3+384x^2-2048x+4096=\left(15-2x\right)^4\)

\(\Leftrightarrow2x^4-60x^3+678x^2-3420x+6497=50625-27000x+5400x^2-480x^3+16x^4\)

\(\Leftrightarrow-14x^4+420x^3-4722x^2+23580x=44128\)

\(-2x\left(7x^3-210x^2+2361x-11790\right)=44128\)

\(\Leftrightarrow-2x\left(\left(x-15\right)\left(7x^2-105x+786\right)\right)=44128\)

\(\Leftrightarrow x=8\)

Vậy tập nghiệm của phương trình là \(S=\left\{8\right\}\)

Chúc bạn học tốt =)) 

30 tháng 1 2018

TIM VE NOI DO

30 tháng 1 2018

?????????????????????????????????????????