\(x^3=y^3+2y^2+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Xét \(y=-1\)\(\Rightarrow x^3=2\left(l\right)\)

Xét \(y=-2\)\(\Rightarrow x=1\)

Xét \(y\ne-1,-2\)thì ta có:

\(\left(y-1\right)^3< y^3+2y^2+1=x^3\le\left(y+1\right)^3\)

\(\Rightarrow\orbr{\begin{cases}y^3+2y^2+1=y^3\\y^3+2y^2+1=\left(y+1\right)^3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

2,đặt y=k2

=>x2=y4+2k

sau đó dùng cái pp mà mình dùng ở câu 1

26 tháng 8 2017

chuyển \(y^3\)sang VT lm như cô rồi ra \(^{y\left(y+3\right)}\) 

xét \(\left(y+1\right)^3-x^3\)\(\Leftrightarrow\left(y+3\right)y\)

Xét 2TH \(\orbr{\begin{cases}y< -3\\y>0\end{cases}}\)rồi có y(y+3)>0  rồi xét y\(\in\)0:-1:-2;-3

chỉ có TH y=0 tm rồi thay

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

19 tháng 9 2018

a, \(x^2+2=2\sqrt{x^2+1}\)

\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)

\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)

b,\(x^2+x+2y^2+y=2xy^2+xy+3\)

\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)

\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)

\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)

đoạn sau bạn tự giái tiếp nhé

19 tháng 9 2018

a) \(x^2+2=2\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)

\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)

\(\Leftrightarrow x=0\)

26 tháng 3 2017

\(pt\Leftrightarrow\left(x-1\right)\left(x-2y^2-y+2\right)=1\)

Ok ?!

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).