Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hà thúy anh - Toán lớp 8 | Học trực tuyến Vừa có ng giải xong
(4x^2+8x+4)=42-6y^2
⇒(2x+2)^2=42-6y^2
do (2x+2)^2≥0 nên 42-6y^2≥0
⇒y=(1,0,2,-1,-2)
+)y=1⇒x=-4 hoặc x=2
+)y=0⇒pt vô no
+)y=-1⇒x=-4 hoặc x=2
+)y=2⇒pt vô no
+)y=-2⇒pt vô no
Vậy tập no pt là :S={(-4,-1),(2,-1),(2,1),(-4,1)}
a) \(x^2-8x+y^2+6y+25=0\)
\(\left(x-8\right)x+y\left(y+6\right)+25=0\)
\(x^2+y^2+6y+25=8x\)
\(\Rightarrow x=4,y=-3\)
b ) 4x2-4x+9y2 -12y +5
<=> [( 2x )2 - 4x + 1 ] [ (3y) 2 - 12y + 4 )] = 0
<=> ( 2x - 1 )2 + ( 3y - 2 )2 =0 ( Vì (2x -1)2 >=0 , ( 3y - 2 )2 >= 0 )
<=> 2x - 1 = 0 và 3y -2 = 0
<=> x = 1/2 và y = 2/3
a, \(ĐKXĐ:x\ne2\)
\(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)
\(\Leftrightarrow\frac{1}{x-2}+\frac{3\left(x-2\right)}{x-2}=\frac{3-x}{x-2}\)
\(\Rightarrow1+3x-6=3-x\)
\(\Leftrightarrow1+3x-6-3+x=0\)
\(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\left(ktm\right)\)
vậy x thuộc tập hợp rỗng
b, \(ĐKXĐ:x\ne\pm1\)
\(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow x^2+x-2x=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x-1=0\Rightarrow x=1\left(ktm\right)\end{cases}}\)
vậy x = 0
c, \(ĐKXĐ:x\ne\pm\frac{1}{2}\)
\(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\Leftrightarrow\frac{8x^2}{3\left(1-2x\right)\left(2x+1\right)}=\frac{2x}{3\left(2x-1\right)}-\frac{1+8x}{4\left(2x+1\right)}\)
\(\Leftrightarrow\frac{32x^2}{12\left(1-2x\right)\left(2x+1\right)}=\frac{-8x\left(2x+1\right)}{12\left(1-2x\right)\left(2x+1\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(2x+1\right)}\)
\(\Rightarrow32x^2=-16x^2-8x-3+6x-24x+48x\)
\(\Leftrightarrow48x^2=22x-3\)
\(\Leftrightarrow48x^2-22x+3=0\)
Ta có: 5y2 chia hết cho 5; 345 chia hết cho 5.
Vậy: 3x2 phải chia hết cho 5.
=> x chia hết cho 5
Trường hợp 1: x = 0
=> PT vô nghiệm.
Trường hợp 2: x = 5
=> PT vô nghiệm
Trường hợp 3: x = 10
=> PT có nghiệm x = 10; y = 3
Trường hợp 4: x >= 15
=> VT > VP
=> PT có nghiệm duy nhất: x = 10, y = 3.
Chuyển vế ta được:
y2+2(x6−3x3y−32)=0y2+2(x6−3x3y−32)=0
↔y2−6x3y+(2x6−64)=0<1>↔y2−6x3y+(2x6−64)=0<1>
Nhận thấy coi <1><1> là phương trình bậc hai ẩn yy
Do đó để phương trình có nghiệm và hơn nữa là nghiệm nguyên thì Δ=(6x3)2−4(2x6−64)Δ=(6x3)2−4(2x6−64) phải chính phương
Do đó đặt x3=kx3=k và (6x3)2−4(2x6−64)=q2(6x3)2−4(2x6−64)=q2
Như vậy 36k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t236k2−8k2+256=q2→28k2+256=q2→2|q→q=2t→7k2+64=t2
Nếu tt lẻ thì kk lẻ do đó 7k2+64≡3(mod4)→t2≡3(mod4)7k2+64≡3(mod4)→t2≡3(mod4) vô lý do số chính phương chia 44 dư 0,10,1
Như vậy tt chẵn nên kk chẵn và t=2b,k=2a→7a2+16=b2t=2b,k=2a→7a2+16=b2
Lập luận tương tự cũng cób,ab,a chẵn nên a=2m,b=2n→7m2+4=n2a=2m,b=2n→7m2+4=n2
Lập luận tương tự một lần nữa có m,nm,n chẵn nên m=2p,n=2q→7p2+1=q2<2>m=2p,n=2q→7p2+1=q2<2>
Tổng hợp các phương trình trên có k=8p,t=8qk=8p,t=8q như vậy x3=8p→2|x→x=2s→s3=px3=8p→2|x→x=2s→s3=p
Khi ấy bài này trở thành 7s6+1=q27s6+1=q2
(x2-xy-6y2)+(2x-6y)-10 =0
[(x2-3xy)+(2xy-6y2)] + 2(x-3y) -10 = 0
(x-3y).(x+2y) + 2(x-3y) -10 = 0
(x-3y).(x+2y+2)=10
vì x,y nguyên x-3y và x+2y+2 phải nguyên
mà 10=1.10=(-1).(-10)=2.5=(-2).(-5)=10.1=(-10).(-1)=5.2=(-5).(-2)
Lời giải:
Ta có \(4x^2+8x=38-6y^2\)
\(\Leftrightarrow 4(x^2+2x+1)=42-6y^2\Leftrightarrow 6(7-y^2)=4(x+1)^2\geq 0\)
\(\Rightarrow 7-y^2\geq 0\Rightarrow y^2\leq 7\Rightarrow -2\leq y\leq 2\)
Mặt khác, nếu \(y\) chẵn thì \(y^2\vdots 4\), mà
\(38\not\vdots 4\Rightarrow 38-6y^2\not\vdots 4\Leftrightarrow 4x^2+8x\not\vdots 4\) (vô lý)
Do đó $y$ lẻ. Ta nhận \(y=\pm 1\)
Thử vào PT ban đầu, thu được \(x=2,-4\)
Vậy các cặp $(x,y)$ thỏa mãn là \((2,1),(2,-1),(-4,1),(-4,-1)\)
cảm ơn nha