K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 7 2021

\(x^3-y^3=xy+25\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)=xy+25\)

\(\Leftrightarrow a^3-25=b\left(1-3a\right)\)(\(a=x-y,b=xy\))

\(\Rightarrow a^3-25⋮\left(1-3a\right)\)

\(\Rightarrow27\left(a^3-25\right)⋮\left(3a-1\right)\)

\(\Leftrightarrow27a^3-1-674=\left(3a-1\right)\left(9a^2+3a+1\right)-674⋮\left(3a-1\right)\)

suy ra \(3a-1\inƯ\left(674\right)=\left\{-674,-337,-2,-1,1,2,337,674\right\}\)

Suy r a\(a\in\left\{-112,0,1,225\right\}\).

suy ra các cặp \(\left(a,b\right)\)thỏa mãn là \(\left(-112,-4169\right),\left(0,-25\right),\left(1,12\right),\left(225,-16900\right)\)

suy ra cặp \(\left(x,y\right)\)thỏa mãn là: \(\left(4,3\right),\left(-3,-4\right)\)

23 tháng 7 2019

\(x^3-y^3=xy+61\)

\(\Leftrightarrow27x^3-27y^3-27xy-1=1646\)

\(\Leftrightarrow\left(3x\right)^3+\left(-3y\right)^3+\left(-1\right)^3-3.3x.\left(-3y\right).\left(-1\right)=1646\)

Áp dụng hđt sau \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)đc

\(\left(3x-3y-1\right)\left(9x^2+9y^2+1+9xy-3y+3x\right)=1646\)

CÓ \(1646=1.1646=2.823\)

Mà \(\hept{\begin{cases}3x-3y-1< 9x^2+9y^2+1+9xy-3y+3x\\3x-3y-1\equiv2\left(mod3\right)\end{cases}}\)

\(\Rightarrow3x-3y-1=2\)

\(\Rightarrow x=y+1\)

THay vào đề bài

\(\left(y+1\right)^3-y^3=\left(y+1\right)y+61\)

\(\Leftrightarrow y^2+y-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\left(tm\right)\\y=-6\left(loai\right)\end{cases}}\)

VỚi y = 5 thì x = y +  1 = 6

6 tháng 9 2016

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)

\(\Leftrightarrow x-y=3\) và \(1-xy=3\)

\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\)

hoặc : \(x-y=0\) và \(1-xy=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\left(-1;-1\right)\)

8 tháng 1 2017

ban oi tai sao den buoc 3 ban lai suy ra nhu vay duoc

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

a.

$x^2-x=y^2-1$
$\Leftrightarrow x^2-x+1=y^2$

$\Leftrightarrow 4x^2-4x+4=4y^2$

$\Leftrightarrow (2x-1)^2+3=(2y)^2$

$\Leftrightarrow 3=(2y)^2-(2x-1)^2=(2y-2x+1)(2y+2x-1)$

Đến đây xét các TH:

TH1: $2y-2x+1=1; 2y+2x-1=3$

TH2: $2y-2x+1=-1; 2y+2x-1=-3$

TH3: $2y-2x+1=3; 2y+2x-1=1$

TH4: $2y-2x+1=-3; 2y+2x-1=-1$

b.

$x^2+12x=y^2$

$\Leftrightarrow (x+6)^2=y^2+36$

$\Leftrightarrow 36=(x+6)^2-y^2=(x+6-y)(x+6+y)$

Đến đây xét trường hợp tương tự phần a.

c.

$x^2+xy-2y-x-5=0$

$\Leftrightarrow x^2+xy=x+2y+5$
$\Leftrightarrow 4x^2+4xy=4x+8y+20$

$\Leftrightarrow (2x+y)^2=4x+8y+20+y^2$

$\Leftrightarrow (2x+y)^2-2(2x+y)+1=y^2+6y+21$

$\Leftrightarrow (2x+y-1)^2=(y+3)^2+12$
$\Leftrightarrow (2x+y-1)^2-(y+3)^2=12$

$\Leftrightarrow (2x+y-1-y-3)(2x+y-1+y+3)=12$

$\Leftrightarrow (2x-4)(2x+2y+2)=12$

$\Leftrightarrow (x-2)(x+y+1)=3$

Đến đây đơn giản rồi.

 

8 tháng 8 2021

a) \(x^2-x=y^2-1\)

\(\Rightarrow x^2-x+1=y^2\)

\(\Rightarrow4x^2-4x+4=4y^2\)

\(\Rightarrow4x^2-4x+1+3=\left(2y\right)^2\)

\(\Rightarrow\left(2x+1\right)^2-\left(2y\right)^2=-3\)

\(\Rightarrow\left(2x-2y+1\right)\left(2x+2y+1\right)=-3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}\left(2x-2y+1\right)\left(2x+2y+1\right)\in Z\\\left(2x-2y+1\right)\left(2x+2y+1\right)\inƯ\left(7\right)\end{matrix}\right.\)

Ta có bảng:

x-y-10-21
x+y1-20-1
x0-1-10
y1-1-1-1

Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(-1;-1\right);\left(-1;-1\right);\left(0;-1\right)\right\}\)

 

27 tháng 2 2021

2(x+y)+16-xy=0

<=> 2x+2y+16-xy=0

<=> y(2-x)-2(2-x)+20=0

<=> (2-x)(y-2)=-20

Vì x,y thuộc Z

=> 2-x;y-2 thuộc Z

=> 2-x;y-2 \(\inƯ\left(-20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)

Xét bảng


 

2-x1-12-24-45-510-1020-20
y-2-2020-1010-55-44-22-11
x1304-26-37-812-1822
y-1822-812-37-260413

Vậy.........

22 tháng 11 2019

Ta có x2 –xy + y2 = 3 ⇔ (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4}

Ta thấy (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4} ≥ 0

⇒ -2 ≤ y ≤ 2

⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x

Ta được các nghiệm  nguyên của phương trình là :

(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)

21 tháng 3 2020

add me