\(x^2-2x-11=y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

\(x^4+2x^3+3x^2+2x=y^2-y\)

\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)

\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)

\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)

Đến đây chắc khó.

15 tháng 6 2019

#)Giải :

VD1:

Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :

\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )

\(\Rightarrow-1\le x\le0\)

Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)

Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)

Vậy...........................

15 tháng 6 2019

#)Giải :

VD2:

\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)

\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)

\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)

Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)

Do đó \(y^4=\left(x^2+y^2+1\right)^2\)

Thay vào phương trình, ta suy ra được \(x=z=0\)

\(\Rightarrow y=\pm1\)

16 tháng 7 2019

\(x^3+2x=2018-y^2\Leftrightarrow x^3-x+3x=2018-y^2\Leftrightarrow x\left(x-1\right)\left(x+1\right)=2018-y^2-3x\) 

\(VT⋮3\Rightarrow2018-y^2-3x⋮3\Leftrightarrow2018-y^2⋮3mà:2018\text{ chia 3 d}ư\text{ 2}\Rightarrow y\text{ chia 3 d}ư\text{ 2(voli)}.\text{Vậy: ko tìm đc x,y}\)

27 tháng 4 2019

tham khảo nè

https://olm.vn/hoi-dap/detail/98464874210.html

27 tháng 4 2019

Với x=-1 => y^3=-4 (loại)

Với x=0 => y^3=-2 (loại)

Với x=1 => y^3=4 (loại)

+ ) Với \(\hept{\begin{cases}x\le-2\\x\ge2\end{cases}\Rightarrow}\left(x+2\right)\left(2x-1\right)\ge0.\Leftrightarrow2x^2+3x-2\ge0\)

\(\Leftrightarrow x^3+2x^2+3x-2\ge x^3\)(1)

Ta có : \(-x^2< 3\Leftrightarrow-x^2-2< 1\Leftrightarrow2x^2-2< 3x^2+1\)\(\Leftrightarrow x^3+3x+2x^2-2< x^3+3x+3x^2+1\)

\(\Leftrightarrow x^3+2x^2+3x-2< \left(x+1\right)^3\)(2)

Từ (1) và (2) suy ra \(x^3\le x^3+2x^x+3x-2=y^3< \left(x+1\right)^3\)

\(\Rightarrow y^3=x^3+2x^2+3x-2=x^3\Leftrightarrow2x^3+3x-2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\Rightarrow x=-2\)

Thay x=-2 vào phương trình ban đầu ta tìm được y^3=-8 -=> y=-2

Vậy....(-2;-2)

Ta

11 tháng 7 2017

Làm cái này thử đi:

Cho \(x,y\ge0\)giải phương trình.

\(9^x-8^x=19y\)

Giải được thì nói tiếp :3

4 tháng 2 2017

coi như ẩn x

\(\left(2x+y\right)^2+3y^2=12\)

=> !y!<=2

vai trò x, y như nhau

với  y=0=> vô nghiệm nguyên 

với y=-1=> x=2

với y=1=> x=-2

(x,y)=(-2,1);(2,-1);(1,-2);(-1,2)

4 tháng 2 2017

cái !y! là dấu GTTĐ à?