Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)
=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương
=> \(\sqrt{503y}\) là số nguyên dương
mà 503 là số nguyên tố và 0 < y < 2012
=> y = 503
=> x = 503
Kết luận:...
Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải?
Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn
bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x)
VT (ở đề bài) = a+b+c
<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0
từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r
\(\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}.1-1}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}.1-1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
\(\sqrt{4+2\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}.1+1^2}\)
=\(\sqrt{\left(\sqrt{3}+1\right)^2}\)
=\(\sqrt{3}+1\)
2012=4.503.
503 nguyên tố thì phải
\(\sqrt{2012}=2\sqrt{503}\)
x=y=503 là nghiệm
(x,y)=(0,2012);(2012,0): (503,503)
có lẽ hết rồi
Kể cả hết rồi, phương pháp mò nghiệm chỉ dành cho cấp 1, ..có mò hết ra vẫn cần một lời giải thức__> kết luận, chính thức hết.