Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2
= ( a2 + 2ab +b2 ) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )
= ( a + b )2 + ( a + c )2 + ( b + c )2
1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c2 )
= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2
= 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )
= (a-b)2 + (a-c)2 + (b-c)2
Bài 1:
\(A=a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)+c^2a^2\left(a-c\right)\)
\(=a^2b^2\left(b-c+c-a\right)+b^2c^2\left(c-a+a-b\right)+c^2a^2\left(a-c\right)\)
\(=a^2b^2\left(b-c\right)+a^2b^2\left(c-a\right)+b^2c^2\left(c-a\right)+b^2c^2\left(a-b\right)+c^2a^2\left(a-c\right)\)
\(=\left(c-a\right)\left(a^2b^2+b^2c^2-c^2a^2\right)+b^2\left[a^2\left(b-c\right)+c^2\left(a-b\right)\right]\)
\(=\left(c-a\right)\left(a^2b^2+b^2c^2-c^2a^2\right)+b^2\left(c-a\right)\left(ac-bc-ba\right)\)
\(=\left(c-a\right)\left[a^2b^2+b^2c^2-c^2a^2+b^2\left(ac-bc-ba\right)\right]\)
2/ \(\left(17x-5\right)^2+2\left(17x-5\right)\left(3x-2\right)+\left(3x-2\right)^2=0\)
\(\Leftrightarrow\left(17x-2+3x-2\right)^2=0\)
\(\Leftrightarrow20x-4=0\)
\(\Rightarrow x=\frac{1}{5}\)
câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)
câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)
= (c2-(a-b)2).((a+b)2-c2)
= (c-a+b).(c+a-b).(a+b-c).(a+b+c)
câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)
câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c
a,b,c bình đẳng => A chia hết cho c-a , a-b
=>A= k(a-b)(b-c)(c-a)
thay thử một bộ a,b,c bất kì => k=? (mình đang vội )
thay k tính đc vàoA= k(a-b)(b-c)(c-a)
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)
Mà do \(n\in N\Rightarrow n^2+10-6n=1\)
\(\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\)
\(\Leftrightarrow n-3=0\)
\(\Leftrightarrow n=3\)
Vậy n=3.