Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^2\left(y^2-1\right)+2y\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+2y\right)\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow y\left(y+1\right)\left(y-1\right)\left(y+2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)\left(y^2+y-2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)^2-2\left(y^2+y\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y-1\right)^2-1-x^2-x=0\)
\(\Leftrightarrow\left(2y^2+2y-2\right)^2-\left(2x+1\right)^2-3=0\)
\(\Leftrightarrow\left(2y^2+2y-2x-3\right)\left(2y^2+2y+2x-1\right)=3\)
Pt ước số
\(\left(1+x\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)=1\)
\(\Rightarrow\dfrac{1+x\sqrt{x^2+1}}{\sqrt{x^2+1}+x}=1\)
\(\Rightarrow1+x\sqrt{x^2+1}=\sqrt{x^2+1}+x\)
\(\Rightarrow1+x\sqrt{x^2+1}-\sqrt{x^2+1}-x=0\)
\(\Rightarrow-\left(x-1\right)+\left(x-1\right)\sqrt{x^2+1}=0\)
\(\Rightarrow\left(x-1\right)\left(\sqrt{x^2+1}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{x^2+1}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\\sqrt{x^2+1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x^2+1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(a,2y^2-x+2xy=y+4\\ \Leftrightarrow2y\left(x+y\right)-\left(x+y\right)=4\\ \Leftrightarrow\left(2y-1\right)\left(x+y\right)=4=4\cdot1=\left(-4\right)\left(-1\right)=\left(-2\right)\left(-2\right)=2\cdot2\)
Vì \(x,y\in Z\Leftrightarrow2y-1\) lẻ
\(\left\{{}\begin{matrix}2y-1=1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y-1=-1\\x+y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)=\left\{\left(3;1\right);\left(4;0\right)\right\}\)
\(pt\Leftrightarrow y\left(y-1\right)=x^4+x^2+10\)
Vì \(x^2\left(x^2+1\right)< x^4+x^2+10< \left(x^4+x^2+10\right)+\left(6x^2+2\right)=\left(x^2+3\right)\left(x^2+4\right)\)
Nên \(x^2\left(x^2+1\right)< y\left(y-1\right)< \left(x^2+3\right)\left(x^2+4\right)\)
\(\Rightarrow y\left(y-1\right)=\left(x^2+1\right)\left(x^2+2\right)\) hoặc \(y\left(y-1\right)=\left(x^2+2\right)\left(x^2+3\right)\). Thay vào pt đầu giải ra ta dc
\(x^2=4\) hoặc \(x^2=1\) suy ra \(x=\pm1\) hoặc \(x=\pm2\)
- Xét \(x=\pm1\Rightarrow\orbr{\begin{cases}y=3\\y=-2\end{cases}}\)
- Xét \(x=\pm2\Rightarrow\orbr{\begin{cases}y=6\\y=-5\end{cases}}\)
x( x2 + x + 1 ) = 4y - 1
<=> ( x2 + 1 )( x + 1 ) = 4y
Vì x,y là số nguyên nên x, y > 0
+) Nếu x = 0 thì y = 0 ( tm )
+) Nếu x > 0 thì y > 0
Do đó 4y là số chẵn nên x + 1 là số chẵn
Đặt x = 2k + 1( k ∈ N ) Khi đó ta có :
( 2k2 2k + 1 )( k + 1 ) = 4y - 1
Vì 4y - 1 chì có ước lẻ là 1 . Mà 2k2 + 2k + 1 là ước lẻ của 4y - 1
nên k = 0
=> x = 1 => y = 1
Vậy phương trình có nghiệm nguyên ( x;y ) là ( 0;0 ) ; ( 1 ; 1 )
a)
\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)
\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)
x^4 + 4x^3+ 6x^2+ 4x = y^2
Hướng dẫn: Ta có: x^4 + 4x^3+ 6x^2+ 4x = y^2
⇔ x^4 +4x^3+6x^2+4x +1- y^2=1
⇔ (x+1)^4 – y^2 = 1
⇔ [(x+1)^2 –y] [(x+1)^2+y]= 1
\(\Leftrightarrow\) \(\hept{\begin{cases}\left(x+1\right)^2-y=1\\\left(x+1\right)^2+y=1\end{cases}}\) hoặc \(\hept{\begin{cases}\left(x+1\right)^2-y=-1\\\left(x+1\right)^2+y=-1\end{cases}}\)
\(\orbr{\begin{cases}1-y=1+y\\-1-y=-1+y\end{cases}}\)
⇒ y = 0 ⇒ (x+1)^2 = 1
⇔ x+1 = ±1 ⇒ x = 0 hoặc x = -2
Vậy ( x, y ) = ( 0, 0 ); ( – 2, 0 )
Chúc bạn hk tốt!!!
Ta có : \(x^4+2x^3-10x^2+10x-3=y^2\)
\(\Leftrightarrow\left(x^4+2x^3-3\right)-\left(10x^2-10x\right)=y^2\)
\(\Leftrightarrow\left(x-1\right).\left(x^3+3x^2-7x+3\right)=y^2\)
\(\Leftrightarrow\left(x-1\right)^2.\left(x^2+4x-3\right)=y^2\)
Vì \(x,y\inℤ\) nên y2 là số chính phương khi
x2 + 4x - 3 là số chính phương
Đặt x2 + 4x - 3 = t2
\(\Leftrightarrow\left(x+t+2\right).\left(x-t+2\right)=7\)
Ta có bảng
x + t + 2 | 1 | 7 | -1 | -7 |
x - t + 2 | 7 | 1 | -7 | -1 |
x | 2 | 2 | -6 | -6 |
t | -3 | 3 | 3 | -3 |
Ta được x = 2 ; x = -6 thỏa
Với x = 2 <=> y = \(\pm3\)
Với x = -6 <=> y = \(\pm21\)
Phương trình được viết lại:
\(4x^2+4x+1=4y^4+4y^3+y^2+3y^2+4y+1\)
\(\Leftrightarrow4x^2+4x+1=\left(2y^2+y\right)^2+3y^2+4y+1\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(2y^2+y+1\right)^2+2y-y^2\)
Nếu: \(y=-1\)và \(2y-y^2< 0\Rightarrow3y^2+4y+1>0\)
\(\Rightarrow\left(2y^2+y\right)^2< \left(2x+1\right)^2< \left(2y^2+y+1\right)^2\)
Ta thấy vô lí vì \(\left(2y^2+y\right)^2;\left(2y^2+y+1\right)\)là 2 số chính phương liên tiếp.
Vì thế nên \(y\)nhận 1 trong những giá trị: \(-1;0;1;2\)
- \(y=-1\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=1\Rightarrow\)Không tồn tại \(x\)
- \(y=2\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
Vậy các nghiệm nguyên của phương trình là: \(\left(x,y\right)\in\left\{\left(0;-1\right),\left(-1;-1\right);\left(0;0\right);\left(-1;0\right);\left(5;2\right);\left(-6;2\right)\right\}\)
\(x^4+y+4=y^2-x^2\Rightarrow4x^4+4y+16=4y^2-4x^2\Rightarrow4x^4+4x^2+1+16=4y^2-4y+1\\ \)
\(\Rightarrow\left(2x^2+1\right)^2+16=\left(2y-1\right)^2\Rightarrow\left(2y-1\right)^2-\left(2x^2+1\right)^2=16\Rightarrow\left(2y-2x^2-2\right)\left(2y+2x^2\right)=16\)\(\Rightarrow\left(y-x^2-1\right)\left(y+x^2\right)=4\)
Do \(\left(y-x^2-1\right)+\left(y+x^2\right)=2y-1\)không chia hết cho 2 => y-x2-1 và y+x2 không cùng tính chẵn lẻ
TH1: y-x2-1 =1 và y+x2=4 => y=3 và x = 1 hoặc -1
Th2: y-x2-1 =-1 và y+x2=-4 => y= -2 và x2 < 0 => loại
Vậy x=1 hoặc -1 và y=3