Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\Leftrightarrow\left(12x^2+12x+11\right)\left(y^2-2y+2\right)=\left(4x^2+4x+3\right)\left(5y^2-10y+9\right)\)
\(\Leftrightarrow12x^2y^2-24x^2y+24x^2+12xy^2-24xy+24x+11y^2-22y+22=20x^2y^2-40x^2y+36x^2+20xy^2-40xy+36x+15y^2-30y+36\)
Có sai đề ko cậu
a/ ĐKXĐ: ...
Đặt \(x^2-x=t\)
\(\frac{t}{t+1}-\frac{t+2}{t-2}=1\Leftrightarrow t\left(t-2\right)-\left(t+1\right)\left(t+2\right)=\left(t+1\right)\left(t-2\right)\)
\(\Leftrightarrow t^2+4t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=0\\x^2-x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0;1\\x^2-x+4=0\left(vn\right)\end{matrix}\right.\)
b.
\(\Leftrightarrow\frac{3\left(2x+1\right)^2+8}{\left(2x+1\right)^2+2}=\frac{5\left(y-1\right)^2+4}{\left(y-1\right)^2+1}\)
Đặt \(\left\{{}\begin{matrix}2x+1=a\\y-1=b\end{matrix}\right.\)
\(\Rightarrow\frac{3a^2+8}{a^2+2}=\frac{5b^2+4}{b^2+1}\Leftrightarrow\left(3a^2+8\right)\left(b^2+1\right)=\left(a^2+2\right)\left(5b^2+4\right)\)
\(\Leftrightarrow3a^2b^2+3a^2+8b^2=5a^2b^2+4a^2+10b^2\)
\(\Leftrightarrow2a^2b^2+a^2+2b^2=0\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=1\end{matrix}\right.\)
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
a)VP lẻ => VT lẻ =>x2-y2=2k+1 (k\(\in\)Z) (số lẻ)
\(\Rightarrow10y+9=\left(2k+1\right)^2\Rightarrow y=\frac{2\left(k+2\right)\left(k-1\right)}{5}\in Z^+\)
\(\Rightarrow\orbr{\begin{cases}\left(k+2\right)⋮5\Rightarrow k=5t-2\Rightarrow y=2t\left(5t-3\right)\left(1\right)\\\left(k-1\right)⋮5\Rightarrow k=5t+1\Rightarrow y=2t\left(5t+3\right)\left(2\right)\end{cases}}\left(t\in Z^+\right)\)
- Xét \(\left(1\right)\Rightarrow x^2=\left(10t^2-6t\right)^2+10t-3\)
Mà \(\hept{\begin{cases}\left(10t^2-6t\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t+1\right)^2\left(\text{khi}\text{ t }\ge1\right)\\\left(10t^2-6t-1\right)^2< \left(10t^2-6t\right)^2+10t-3< \left(10t^2-6t\right)^2\left(\text{khi t}\le-1\right)\\\left(10t^2-6t\right)^2+10t-3=-3< 0\left(\text{khi t}=0\right)\end{cases}}\)
Suy ra pt vô nghiệm
- Xét (2)\(\Rightarrow x^2=\left(10t^2+6t\right)^2+10t+3\)
Mà \(\left(10t^2+6t\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t+1\right)^2\left(\text{khi t}\ge1\right)\) (*)
\(\left(10t^2+6t-1\right)^2< \left(10t^2+6t\right)^2+10t+3< \left(10t^2+6t\right)^2\left(\text{khi t}< -1\right)\)(*)
\(\left(10t^2+6t\right)^2+10t+3=3^2\left(\text{khi t}=-1\right)\)(*)
\(1^2< \left(10t^2+6t\right)^2+10t+3=3< 2^2\left(\text{khi t}=0\right)\)(*)
Suy ra \(t=-1;y=4;x=\pm3\) (thỏa mãn)
Vậy....
P/s:Ngoặc nhọn 4 dòng có dấu (*) vào
Xin lỗi bạn mình chưa học lớp 8
Trông đề bài khó quá
Mình nghiệp dư lắm
c) (x+1)(x+2)(x+4)(x+5)=40
<=> (x+1)(x+5)(x+2)(x+4)=40
<=>(x^2+6x+5)(x^2+6x+8)=40
Đặt x^2+6x+5=y
=>y(y+3)=40
=>y^2+3y=40<=>y^2+2.\(\frac{3}{2}\)y+\(\frac{9}{4}\)=40+\(\frac{9}{4}\)<=> (y+\(\frac{3}{2}\))2=42,25<=> y+\(\frac{3}{2}\)=6,5 hoặc -6,5
Bạn tự làm tiếp nha :333
a)x4 - 4x3 - 19x2 +106x - 120 = 0
=>x4 -2x3 -2x3+4x2 -23x2 +46x +60x - 120 = 0
=>x3(x-2) -2x2(x-2) -23x(x-2) +60(x-2)= 0
=>(x3- 2x2 -23x+ 60)(x-2) =0
=>(x3 - 3x2 +x2 -3x -20x+60)(x -2) = 0
=>(x2 +x -20)(x-3)(x-2) = 0
=>(x2 -4x +5x -20)(x-3)(x-2) = 0
=>(x+5)(x-4)(x-3)(x-2) =0
=>x= -5; 4; 3; 2
b)=>4x4 -4x3 +16x3 -16x2 +21x2 -21x +15x -15= 0
=>(x-1)(4x3 +16x2 +21x+15)= 0
=>...bạn tự làm phần tiếp theo nhé
c)Làm giống nguyễn thị ngọc linh
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
a) 2x^2 + 3 = 2x(x + 4) - 7
<=> 2x^2 + 3 = 2x^2 + 8x - 7
<=> 2x^2 - 2x^2 - 8x = - 7 - 3
<=> -8x = -10
<=> x = -10/-8 = 5/4
b) 4x^2 - 12x + 5 = 0
<=> 4x^2 - 2x - 10x + 5 = 0
<=> 2x(2x - 1) - 5(2x - 1) = 0
<=> (2x - 5)(2x - 1) = 0
<=> 2x - 5 = 0 hoặc 2x - 1 = 0
<=> x = 5/2 hoặc x = 1/2
c) |5 - 2x| = 1 - x
<=> \(\hept{\begin{cases}5-2x\text{ nếu }5-2x\ge0\Leftrightarrow x\ge\frac{5}{2}\\-\left(5-2x\right)\text{ nếu }5-2x< 0\Leftrightarrow x< \frac{5}{2}\end{cases}}\)
+) nếu x >= 5/2, ta có:
5 - 2x = 1 - x
<=> -2x + 1 = 1 - 5
<=> -x = -4
<=> x = 4 (tm)
+) nếu x < 5/2, ta có:
-(5 - 2x) = 1 - x
<=> -5 + 2x = 1 - x
<=> 2x + 1 = 1 + 5
<=> 3x = 6
<=> x = 2 (ktm)
d) \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}-\frac{2x+3}{x^2+x+1}\) ; ĐKXĐ: x # 1
<=> \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x+3}{x^2+x+1}\)
<=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
<=> 2(x^2 + x + 1) = (2x - 1)(2x + 1) - (2x + 3)(x - 1)
<=> 2x^2 + 2x + 2 = 2x^2 - x + 2
<=> 2x^2 - 2x^2 + 2x - x = 2 - 2
<=> x = 0
mạn phép vô đây để kiếm câu trả lời
\(2x^2+3=2x\left(x+4\right)-7\)
\(< =>2x^2+3=2x.x+4.2x-7\)
\(< =>2x^2+3=2x^2+8x-7\)
\(< =>2x^2+3-2x^2=8x-7\)
\(< =>\left(2x^2-2x^2\right)-8x=-7-3\)
\(< =>-8x=-10< =>8x=10\)
\(< =>x=10:8=\frac{10}{8}=\frac{5}{4}\)
\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)
- Với \(x=2\Rightarrow y=5\)
- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\)
Đặt \(y-5=n\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)
\(\Rightarrow x^2+8=n^2\)
\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)
\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)