\(x^2y+3y+6=x^3+4x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2019

\(x^3+4x-6=y\left(x^2+3\right)\Rightarrow y=\frac{x^3+4x-6}{x^2+3}=x+\frac{x-6}{x^2+3}\)

Do \(x;y\) nguyên \(\Rightarrow\frac{x-6}{x^2+3}\) nguyên

Nếu lớp 9 đến đoạn này chỉ cần sử dụng miền giá trị, còn lớp 8 thì chịu khó đánh giá:

\(\frac{x-6}{x^2+3}=\frac{-3x^2-9+3x^2+x+3}{x^2+3}=-3+\frac{3x^2+x+3}{x^2+3}>-3\)

\(\frac{x-6}{x^2+3}=\frac{x^2+3-x^2+x-3}{x^2+3}=1-\frac{x^2-x+3}{x^2+3}< 1\)

Vậy \(-3< \frac{x-6}{x^2+3}< 1\Rightarrow\left[{}\begin{matrix}\frac{x-6}{x^2+3}=-2\Rightarrow x=0\\\frac{x-6}{x^2+3}=-1\left(ko-co-x-nguyen\right)\\\frac{x-6}{x^2+3}=0\Rightarrow x=6\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;-2\right);\left(6;6\right)\)

11 tháng 4 2019

hơi khó hiểu nhưn vẫn cảm ơn bạn nha

hom qua mik chua roi

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

Thông cảm nha tại tớ làm chi tiết nên bị dài

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

20 tháng 7 2019

mấy bài này dễ mà bạn

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

7 tháng 1 2017

1. \(x\left(y-4\right)=35-5\left(y-4\right)\) với y= 4 không phải nghiệm y khác 4

\(x=\frac{35}{y-4}-1\)

y=4+35/n

x=n-1

\(\hept{\begin{cases}n=\left\{-7,-5,-1,1,5,7\right\}\\y=\left\{-1,-3,-31,39,11,9\right\}\\x=n-1=\left\{-8,-6,-2,0,4,6\right\}\end{cases}}\)

2.x^2+x+6=y^2

4x^2+4x+1=4y^2-23

(2x+1)^2=4y^2-23

=>4y^2-23=t^2

(2y)^2-t^2=23

=>\(\hept{\begin{cases}y=+-6\\t=+-11\end{cases}\Rightarrow\hept{\begin{cases}2x+1=11\\2x+1=-11\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=-6\end{cases}}}\)