Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2+2xy=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3-3xy\)
\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)
mà \(\left(x-y\right)^2\ge0,\forall x;y\inℤ\)
PT\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\)
\(TH1:\left\{{}\begin{matrix}x-y=3\\1-xy=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+3\\xy=-2\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\right\}\)
\(TH2:\left\{{}\begin{matrix}x-y=0\\1-xy=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
Vậy \(\Leftrightarrow\left(x;y\right)\in\left\{\left(1;-2\right);\left(2;-1\right);\left(-1;2\right);\left(-2;1\right);\left(1;1\right);\left(-1;-1\right)\right\}\)
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3.\left(1-xy\right)\)
\(\Leftrightarrow x-y=3\) và \(1-xy=3\)
\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right),\left(-1;2\right),\left(-2;1\right)\)
hoặc \(x-y=0\) và \(1-xy=0\)
\(\Leftrightarrow\left(x;y\right)=\left(1;1\right),\left(-1;-1\right)\)
Ta có:
x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)
⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1
⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)
Đặt (x2+1;x+1)=d(x2+1;x+1)=d
⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d
⟹2⋮d⟹2⋮d
Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1
⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2
Từ đây dễ dàng suy ra x=0x=0
⟹y=0;y=−1⟹y=0;y=−1
Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)
Với x, y, z nguyê:
Có: \(x^2+y^2-xy=x+y+2\)
=> \(2x^2+2y^2-2xy-2x-2y=4\)
=> \(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=6=1^2+1^2+2^2\)
=> x khác y
G/s : x >y
=> x -1 > y - 1
Có các TH saU;
\(\hept{\begin{cases}x-1=1\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=4\)( thỏa mãn )
\(\hept{\begin{cases}x-1=-1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=1\)( thỏa mãn)
\(\hept{\begin{cases}x-1=1\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )
\(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}\Rightarrow\left(x-y\right)^2=1\)(thỏa mãn)
\(\hept{\begin{cases}x-1=2\\y-1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=0\end{cases}}\Rightarrow\left(x-y\right)^2=9\)( loại )
\(\hept{\begin{cases}x-1=2\\y-1=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=-1\end{cases}}\Rightarrow\left(x-y\right)^2=16\)( loại )
Vậy nghiệm ( x; y) là ( 2;0), (0; -1) , (3; 2 ), và các hoán vị.
\(y\left(x+1\right)=6-x.\)
\(x=-1;\)không là nghiệm
=> \(y=\frac{6-x}{x+1}=-1+\frac{7}{x+1}\in Z\)
=>\(x+1\in U\left(7\right)\Leftrightarrow x\in\left\{-8;-2;0;6\right\}\)
+ x = -8 => y =-2
+ x =-2 => y= -8
+ x =0 => y = 6
+ x =6 => y = 0
Ta có: \(x+y+xy=6\)
\(x\left(y+1\right)+\left(y+1\right)=7\)
\(\left(x+1\right)\left(y+1\right)=7\)
Vì x, y nguyên mà 7=1.7=(-1).(-7)
\(\Rightarrow\hept{\begin{cases}x+1=1\\y+1=7\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=6\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x+1=7\\y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x+1=-1\\y+1=-7\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-8\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x+1=-7\\y+1=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-8\\y=-2\end{cases}}\)
Vậy PT có các cặp nghiệm (x, y) là (0,6) , (6,0) , (-2,-8) , (-8,-2)
Đenta tính sai rồi bạn ạk