Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)
Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)
Áp dụng Côsi ta có:
\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)
\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)
\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)
\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)
Dấu "=" xảy ra khi và chỉ khi t = 1.
Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)
\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)
Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)
x-2006=y
I(y+1)I^2005+IyI^2006=1
=> y=0, y=-1
x=2006 hoac x=2005
Vì vai trò bình đẳng của \(x,y\) trong phương trình trên, nên ta có thể đặt giả thiết \(x\ge y\)
Từ phương trình trên, suy ra \(x< 2007\) hay \(x+1\le2007\)
Khi đó, \(2007^{2005}\ge\left(x+1\right)^{2005}>x^{2005}+2005.x^{2004}\)
tức là \(2007^{2005}-x^{2005}>2005.x^{2004}\)
nên \(y^{2005}>2005.x^{2004}\ge2005.y^{2004}\)
\(\Rightarrow\) \(y>2005\)
Do đó, \(2007>x\ge y>2005\)
Vậy, \(x=2006\) và \(y=2006\)
Thử lại không thỏa mãn đẳng thức trên.
Vậy, pt vô nghiệm