K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)

\(\Leftrightarrow x-y=3\) và \(1-xy=3\)

\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\)

hoặc : \(x-y=0\) và \(1-xy=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\left(-1;-1\right)\)

8 tháng 1 2017

ban oi tai sao den buoc 3 ban lai suy ra nhu vay duoc

4 tháng 2 2017

coi như ẩn x

\(\left(2x+y\right)^2+3y^2=12\)

=> !y!<=2

vai trò x, y như nhau

với  y=0=> vô nghiệm nguyên 

với y=-1=> x=2

với y=1=> x=-2

(x,y)=(-2,1);(2,-1);(1,-2);(-1,2)

4 tháng 2 2017

cái !y! là dấu GTTĐ à?

4 tháng 2 2020

\(x+y+xy=x^2+y^2\Leftrightarrow2x^2+2y^2=2x+2y+2xy\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2=2\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

tới đây x;y nguyên nên dễ rồi

8 tháng 6 2020

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm

22 tháng 11 2019

Ta có x2 –xy + y2 = 3 ⇔ (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4}

Ta thấy (x- \displaystyle \frac{y}{2})2 = 3 – \displaystyle \frac{3y_{{}}^{2}}{4} ≥ 0

⇒ -2 ≤ y ≤ 2

⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x

Ta được các nghiệm  nguyên của phương trình là :

(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)

21 tháng 3 2020

add me
 

em ms hok lóp 7 thui một năm nữa em sẽ giúp nhá sorry zery much

11 tháng 2 2016

Ta có:

\(x^2+xy+y^2=3\)  \(\left(\text{*}\right)\)  

\(\Leftrightarrow\)  \(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=3\)

\(\Leftrightarrow\)  \(\left(x+\frac{y}{2}\right)^2=3-\frac{3y^2}{4}\)

Vì  \(\left(x+\frac{y}{2}\right)^2\ge2\)  nên  \(3-\frac{3y^2}{4}\ge0\) , suy ra  \(-2\le y\le2\) , tức là  \(y\in\left\{-2;-1;0;1;2\right\}\)

Lần lượt thay các giá trị  \(y\in\left\{-2;-1;0;1;2\right\}\)  vào  \(\left(\text{*}\right)\) , ta lần lượt tìm được các nghiệm là 

\(\left(x;y\right)=\left\{\left(1;-2\right),\left(-1;-1\right),\left(2;-1\right),\left(-2;1\right),\left(1;1\right),\left(-1;2\right)\right\}\)  (thỏa mãn  \(x,y\in Z\) )

 

17 tháng 2 2020

Ta có: \(x+xy-x^2+y=1\)

<=> \(\left(x+1\right)+\left(1-x^2\right)+\left(xy+y\right)=3\)

<=> (x + 1) + ( 1 + x) ( 1 - x ) + y ( x + 1 ) = 3

<=> ( x + 1 ) ( 1 + 1 - x + y ) = 3

<=> ( x + 1 ) ( 2 - x  + y ) = 3

Chia trường hợp lập bảng rồi làm tiếp nhé!

18 tháng 2 2020

em có cách khác:

\(x+xy-x^2+y=1\)

\(\Leftrightarrow xy+y=x^2+1-x\)

\(\Leftrightarrow y=\frac{x^2-x+1}{x+1}=\frac{\left(x+1\right)^2-3x}{x+1}=x+1-\frac{3x}{x+1}\)

Do y nguyên nên \(\frac{3x}{x+1}\) nguyên 

\(\Rightarrow3x⋮x+1\)

\(\Rightarrow3\left(x+1\right)-3⋮x+1\)

\(\Rightarrow x+1\in\left\{1;3;-1;-3\right\}\)

Tìm được x xong thử vào tìm y nhé !