K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Lời giải:

PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$

Coi đây là pt bậc 2 ẩn $x$ thì:

$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:

$x_1=\frac{1-3y+y-3}{2}=-y-1$

$x_2=\frac{1-3y+3-y}{2}=2-2y$

Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.

13 tháng 1 2017

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

11 tháng 10 2018

Gọi d là ƯCLN(x+1;x^2+1)

Suy ra đc 2 chia hết cho d

Mà 2y+1 lẻ nên d=1

Suy ra x+1 và x^2+1 ng tố cùng nhau

Suy ra mỗi cái đều là scp

1 tháng 11 2017

Ta có x³- y³ - 2y² - 3y - 1= 0 

Hay x³ = y³ + 2y² + 3y + 1 bạn sử dụng pp đánh giá 

Do y² ≥ 0 nên y³ - 3y² + 3y - 1 < y³ + 2y² + 3y + 1 

và y³ + 2y² + 3y + 1 ≤ y³ + 3y² + 3y + 1 

( y - 1 )³ < x³ ≤ ( y + 1 )³ 

Nếu x³ = y³ tìm được nghiệm ( -1; -1 ) 

Nếu x³ = ( y + 1 )³ tìm được nghiệm ( 1; 0 )

1 tháng 11 2017
Chuyển vế y^3 sang.Dùng nguyên lí kẹp
7 tháng 3 2019

\(8x^2-3xy-5y=25\)

\(\Leftrightarrow8x^2-25=3xy+5y\Leftrightarrow8x^2-25=y\left(3x+5\right)\)

\(\Leftrightarrow y=\frac{8x^2-25}{3x+5}\)\(\Rightarrow9y=\frac{72x^2-225}{3x+5}=24x-40-\frac{25}{3x+5}\)

\(\Rightarrow3x+5\inƯ\left(25\right)=\pm1;\pm5;\pm25\)

Đến đây bạn tự suy ra x rồi thay vào biểu thức trên để suy ra y là ok.

25 tháng 9 2016

x2 - 2y2 = 5

=>x2=2y2+5  (1)

=>x là số lẻ. Đặt \(x=2k+1\left(k\in Z\right)\). Khi đó

\(\left(1\right)\Leftrightarrow\left(2k+1\right)^2=2y^2+5\)

\(\Leftrightarrow4k^2+4k+1=2y^2+5\)

\(\Leftrightarrow2y^2=4k^2+4k-4\)

\(\Leftrightarrow y^2=2\left(k^2+k-1\right)\) (2)

=>y chẵn. Đặt \(y=2n\left(n\in Z\right)\). Khi đó 

\(\left(2\right)\Leftrightarrow4n^2=2\left(k^2+k-1\right)\)

\(\Leftrightarrow2n^2+1=k\left(k+1\right)\) (*)

Nhìn vào (*) ta thấy VT lẻ, VP chẵn (vì k; k+1 là 2 số nguyên liên tiếp nên một trong 2 số là chẵn)

=> (*) vô nghiệm =>pt đầu vô nghiệm

Vậy không có x,y nguyên nào thỏa mãn 

10 tháng 2 2017

x2 - 2y2 = 5   (4)

Lời giải : Từ phương trình (4) ta => x phải là số lẻ. Thay x = 2k + 1 (k thuộc Z) vào (4), ta được : 
4k2 +4k + 1 - 2y2 = 5 
tương đương 2(k2 + k - 1) = y2 
=> y2 là số chẵn => y là số chẵn.

Đặt y = 2t (t thuộc Z), ta có : 
2(k2 + k - 1) = 4t2 
tương đương k(k + 1) = 2t2 + 1   (**)

Nhận xét : k(k + 1) là số chẵn, 2t2 + 1 là số lẻ => phương trình (**) vô nghiệm.

Vậy phương trình (4) không có nghiệm nguyên.

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn