Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ....
PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)
Dễ thấy cái ngoặc to >0. Do đó x = y.
Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)
Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D
b,ĐK:\(-3\le x\le\frac{3}{2}\)
\(PT\Leftrightarrow x-1+4\left(\sqrt{x+3}-2\right)+2\left(\sqrt{3-2x}-1\right)=0\)
\(\Leftrightarrow x-1+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}+\frac{2\left(2-2x\right)}{\sqrt{3-2x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)
Với \(x\ge-3\) \(\Rightarrow\frac{4}{\sqrt{x+3}+2}>0\) và \(3-2x\le9\Rightarrow-\frac{4}{\sqrt{3-2x}+1}\ge-1\)
\(\Rightarrow1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)(tm)
c,Đk: \(x\ge2,y\ge3,z\ge5\)
pt <=> \(x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\)
<=> \(\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)
<=>\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=\)0
=>\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)(t/m)
d, \(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\left(đk:x,y,z\ge\frac{1}{4}\right)\)
<=> \(4x+4y+4z=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
<=> \(\left(4x-1\right)-2\sqrt{4x-1}+1+\left(4y-1\right)-2\sqrt{4y-1}+1+\left(4z-1\right)-2\sqrt{4z-1}+1=0\)
<=>\(\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=\frac{1}{2}\end{matrix}\right.\)(tm)
1) Ta có pt \(\Leftrightarrow\sqrt{x+1}+2x\sqrt{x+3}=2x+\sqrt{\left(x+1\right)\left(x+3\right)}\)
Đặt \(\sqrt{x+1}=a;\sqrt{x+3}=b\left(b>a\ge0\right)\)
Ta có pt \(\Leftrightarrow a+2xb=2x+ab\Leftrightarrow a\left(1-b\right)-2x\left(1-b\right)=0\Leftrightarrow\left(a-2x\right)\left(1-b\right)=0\)
Đến đây tự thay a,b vào rồi giải pt bậc 2 nhá !
b, trừ từng vế của 2 pt trong hệ ta có pt hệ quả có nhân tử chung là x-y
2,đặt y=k2
=>x2=y4+2k
sau đó dùng cái pp mà mình dùng ở câu 1
chuyển \(y^3\)sang VT lm như cô rồi ra \(^{y\left(y+3\right)}\)
xét \(\left(y+1\right)^3-x^3\)\(\Leftrightarrow\left(y+3\right)y\)
Xét 2TH \(\orbr{\begin{cases}y< -3\\y>0\end{cases}}\)rồi có y(y+3)>0 rồi xét y\(\in\)0:-1:-2;-3
chỉ có TH y=0 tm rồi thay