K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  

23 tháng 3 2023

dạ mình cám ơn ạ nma cho mình hỏi chút cái chỗ 2x1+x2=3 và x1+x2= gì v ạ 

9 tháng 5 2021

a, khi m=3 => pt: x^2-3x=0<=>x(x-3)=0<=>x=0 hoặc x=3

b,để pt có 2nghiem khi \(\Delta\)\(\ge\)0<=>(-m)^2-4.(3-m)\(\ge\)0<=>m^2-12+4m\(\ge\)0

<=>(m-2)(m+6)\(\ge\)0<=>m\(\ge\)2 và m\(\le\)-6 thì pt có 2 nghiệm

theo vi et=>x1+x2=m , x1.x2=3-m

vì x1 là nghiệm phương trình nên ta có: x1^2-m.x1+3-m=0

<=>x1^2=m.x1-3+m

có (x1^2+3)(x2+1)=12<=>(m.x1+m)(x2+1)=12<=>

m.x1.x2+m.x1+m.x2+m-12=0<=>m.(3-m)+m(x1+x2)+m-12=0

<=>m.(3-m)+m^2+m-12=0<=>3m-m^2+m^2+m-12=0

<=>4m=12<=>m=3(thỏa mãn)

vậy....

 

9 tháng 5 2021

a, Thay m = 3 => \(x^2-3.x+3-3=0\Leftrightarrow x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

12 tháng 2 2016

pt(1) nhân 3 ; pt (2) nhân 2 sau đó trừ hai pt đc pt bậc nhất hai ẩn b;c 

tìm nghiệm nguyên pt thay vào tìm a 

12 tháng 2 2016

nhưng bài này hình như phải giải pt nghiệm nguyên cậu giải thử chỗ pt nghiệm nguyên đi thắng

a) Thay a=3 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}4x-3y=6\\-5x+3y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=14\\4x-3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-14\\-56-3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-14\\-3y=62\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-14\\y=-\dfrac{62}{3}\end{matrix}\right.\)

Vậy: Khi a=3 thì hệ pt có nghiệm duy nhất là: \(\left(x,y\right)=\left(-14;-\dfrac{62}{3}\right)\)

 

13 tháng 1 2021

tại sao cái bước chuyển đổi thứ 3 lại ra là {-56-3y=6 ạ

  
4 tháng 8 2021

\(a,m=3=>x^2+3x-2=0\)

\(\Delta=3^2-4\left(-2\right)=17>0\)

pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)

b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)

=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m

theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)

có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)

\(< =>-2\left(-m\right)=2014< =>m=1007\)

a) Thay m=3 vào phương trình, ta được:

\(x^2+3x-2=0\)

\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)

10 tháng 4 2023

a, Thay \(m=-3\) vào \(\left(1\right)\)

\(x^2-2.\left(m-1\right)x-m-3=0\\ \Leftrightarrow x^2-2.\left(-3-1\right)x+3-3=0\\ \Leftrightarrow x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy với \(m=-3\) thì \(x=0;x=-8\)

b,  

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)\\ =m^2-2m+1+m+3\\ =m^2-m+4\)

phương trình có hai nghiệm phân biệt

 \(\Delta'>0\\ m^2-m+4>0\\ \Rightarrow m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{7}{2}>0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0\left(lđ\right)\)

\(\Rightarrow\forall m\)

Áp dụng hệ thức Vi ét :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow x_1^2+2x_1.x_2+x^2_2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(2.\left(m-1\right)\right)^2-4.\left(-m-3\right)=4m^2-5.\left(-m-3\right)\\ \Leftrightarrow4m^2-8m+4+4m+12-4m^2-5m-15=0\\ \Leftrightarrow-9m+1=0\\ \Leftrightarrow m=\dfrac{1}{9}\)

Vậy \(m=\dfrac{1}{9}\)

10 tháng 4 2023

a.

Thế m = -3 vào phương trình (1) ta được:

\(x^2-2\left(-3-1\right)x-\left(-3\right)-3=0\)

\(\Leftrightarrow\) \(x^2+8x=0\)

 \(\Leftrightarrow x\left(x+8\right)=0\\ \Rightarrow x_1=0,x_2=-8\)

b.

Để phương trình (1) có hai nghiệm phân biệt thì:

\(\Delta>0\\ \Leftrightarrow\left[-2\left(m-1\right)\right]^2-4.1.\left(-m-3\right)>0\)

\(\Leftrightarrow4.\left(m^2-2m+1\right)+4m+12>0\)

\(\Leftrightarrow4m^2-8m+4+4m+12>0\)

\(\Leftrightarrow4m^2-4m+16>0\)

\(\Leftrightarrow\left(2m\right)^2-4m+1+15>0\)

\(\Leftrightarrow\left(2m-1\right)^2+15>0\)

Vì \(\left(2m-1\right)^2\) luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình (1) có nghiệm với mọi m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\) (I)

có:

\(\left(x_1-x_2\right)^2=4m^2-5x_1+x_2\)

<=> \(x_1^2-2x_1x_2+x_2^2-4m^2+5x_1-x_2=0\)

<=> \(x_1^2-2x_1x_2+x_2^2+2x_1x_2-2x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(x_1+x_2\right)^2-4x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(2m-2\right)^2-4.\left(-m-3\right)-4m^2+5x_1-x_2=0\)

<=> \(4m^2-8m+4+4m+12-4m^2+5x_1-x_2=0\)

<=> \(-4m+16+5x_1-x_2=0\)

<=> \(5x_1-x_2=4m-16\) (II)

Từ (I) và (II) ta có:

\(\left\{{}\begin{matrix}5x_1-x_2=4m-16\left(2\right)\\x_1+x_2=2m-2\left(3\right)\\x_1x_2=-m-3\left(4\right)\end{matrix}\right.\)

Từ (2) ta có:

\(x_1=\dfrac{4m-16+x_2}{5}=\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2\) (x)

Thế (x) vào (3) được:

\(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2=2m-2\)

<=> \(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2-2m+2=0\)

<=>  \(-1,2m-1,2+1,2x_2=0\)

<=> \(x_2=1,2m+1,2\) (xx)

Thế (xx) vào (3) được:

\(x_1+1,2m+1,2=2m-2\)

<=> \(x_1+1,2m+1,2-2m+2=0\)

<=> \(x_1-0,8m+3,2=0\)

<=> \(x_1=-3,2+0,8m\) (xxx)

Thế (xx) và (xxx) vào (4) được:

\(\left(-3,2+0,8m\right)\left(1,2m+1,2\right)=-m-3\)

<=> \(-3,84m-3,84+0,96m^2+0,96m+m+3=0\)

<=> \(0,96m^2-1,88m-0,84=0\)

\(\Delta=\left(-1,88\right)^2-4.0,96.\left(-0,84\right)=6,76\)

\(m_1=\dfrac{1,88+\sqrt{6,76}}{2.0,96}=\dfrac{7}{3}\left(nhận\right)\)

\(m_2=\dfrac{1,88-\sqrt{6,76}}{2.0,96}=-\dfrac{3}{8}\left(nhận\right)\)

T.Lam

2 tháng 6 2017

sai đề ở căn thứ 3

2 tháng 6 2017

\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

giúp mình với ạ =))