Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(9x^2+y^2=18x+6y-18\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
a) \(9x^2+y^2=18x+6y-18\)
\(\Rightarrow9x^2+y^2-18x-6y+9=0\)
\(\Rightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)=0\)
\(\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2=0\)
Mà \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)
Vậy ....................
Câu b để mik nghĩ tiếp
1/ Ta có
\(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự
\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
Đk: x khác 4, 5, 6, 7
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé
a.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2-y^2\) chia 4 dư 0;1;3 mà \(1998\) chia 4 dư 2 nên PT vô nghiệm.
b.
Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2+y^2\) chia 4 dư 0;1;2 mà \(1999\) chia 4 dư 3 nên PT vô nghiệm
#)Giải :
VD1:
a) Ta thấy x2,y2 chia cho 4 chỉ dư 0,1
nên x2 - y2 chia cho 4 có số dư là 0,1,3. Còn vế phải chia cho 4 có số dư là 2
=> Phương trình không có nghiệm nguyên
b) Ta thấy x2 + y2 chia cho 4 có số dư là 0,1,2. Còn vế phải 1999 chia cho 4 dư 3
=> Phương trình không có nghiệm nguyên
coi như ẩn x
\(\left(2x+y\right)^2+3y^2=12\)
=> !y!<=2
vai trò x, y như nhau
với y=0=> vô nghiệm nguyên
với y=-1=> x=2
với y=1=> x=-2
(x,y)=(-2,1);(2,-1);(1,-2);(-1,2)
\(x+y+xy=x^2+y^2\Leftrightarrow2x^2+2y^2=2x+2y+2xy\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2=2\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
tới đây x;y nguyên nên dễ rồi
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
Nhân cả 2 vế của pt với 4 ta được 4x2 + 4y2 - 4x - 4y = 32
=> ( 2x - 1)2 + (2y - 1)2 = 34 mà 34 = 52 + 32
Nên ( 2x - 1) , (2y - 1) thuộc tập hợp (5,3) , ( -5, - 3) , (5,-3) giải ra ta tìm được x,y
x2+y2-x-y=8 <=> 4x2+4y2-4x-4y=32 <=> 4x2-4x+1+4y2-4y+1=34
<=> (2x-1)2+(2y-1)2=34=25+9=52+32 . Ta có các trường hợp:
\(\hept{\begin{cases}\left(2x-1\right)^2=5^2\\\left(2y-1\right)^2=3^2\end{cases}}\)=> \(\hept{\begin{cases}2x-1=-5\\2y-1=-3\end{cases}}\)=> \(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\) và \(\hept{\begin{cases}2x-1=5\\2y-1=3\end{cases}}\)=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(\hept{\begin{cases}\left(2x-1\right)^2=3^2\\\left(2y-1\right)^2=5^2\end{cases}}\)=> \(\hept{\begin{cases}2x-1=-3\\2y-1=-5\end{cases}}\)=> \(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\) và \(\hept{\begin{cases}2x-1=3\\2y-1=5\end{cases}}\)=> \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)
ĐS: Ta có 4 cặp {x, y} thỏa mãn là: {-2, -1}; {3; 2}; {-1; -2}; {2; 3}
\(x^2+y^2=3-xy\)
\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)
\(\Leftrightarrow x-y=3\) và \(1-xy=3\)
\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\)
hoặc : \(x-y=0\) và \(1-xy=0\)
\(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\left(-1;-1\right)\)
ban oi tai sao den buoc 3 ban lai suy ra nhu vay duoc
\(9x+2=y^2+y\Rightarrow9x+2=y\left(y+1\right)\)
\(\Rightarrow9x+2⋮2\Rightarrow9x⋮2\Rightarrow x⋮2\)
Vậy x chia hết cho 2 (cứ thay 1 số x chia hết cho 2 thì tìm được 1 số y)
Vậy có vô số x,y thỏa mãn đề.