Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
\(x^2-4xy+5y^2=16\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16=4^2+0^2=0^2+4^2\)
\(TH1:\left\{{}\begin{matrix}\left(x-2y\right)^2=4^2\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4;x=-4\\y=0\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
\(xy+3x-y=38\)
\(\Leftrightarrow\left(xy-y\right)+\left(3x-3\right)=35\)
\(\Leftrightarrow y\left(x-1\right)+3\left(x-1\right)=35\)
\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=35\)
Làm nốt
ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)
\(\Leftrightarrow\) cái đó
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0
⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0
Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔
(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1
2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10
= (x+2y)^2 - 2(x+2y) +10
= 5^2 - 2x5 +10
= 25
4, x2 - 4xy + x + 4y = 5
x2 -4xy + x + 4y - 1 - 1 = 3
(x2 -1) + (x-1)- 4y( x-1) = 3
(x-1)(x+1) + (x-1) - 4y (x-1) = 3
(x-1)( x + 1 + 1 -4y) =3
(x-1)(x-4y +2) = 3
th1: x - 1 = 3 và x-4y+ 2 = 1 ⇔ x =4; y= 5/4 loại
th2: x - 1 = - 3 và x - 4y + 2 = -1⇔ x =-2; y= 1/4 loại
th3: x - 1 = 1 và x -4y + 2 = 3 ⇔ x =2; y = 1/4 loại
th4: x - 1 = -1 và x-4y + 2 = -3 ⇔ x = 0 ; y = 5/4
ko có giá trị nào của x,y thỏa mãn đề bài.
6, (y+2)x2 - y2 - 2y - 1 = 0
(y +2)x2 - y(y+2) = 1
(y+2)(x2-y) =1
th1 : y+2 = 1; x2 - y = 1 ⇔ y = -1; x =+- \(\sqrt{2}\)
th2: y + 2 = -1; x2 - y = -1 ⇔ y = -3; x2 = -2 Loại
ko có giá trị nào của x,y thỏa mãn đề bài