Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)
\(\Rightarrow3\left(x-3\right)^2\le33\)
\(\Leftrightarrow\left(x-3\right)^2\le11\)
\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)
Thế lần lược vô giải tiếp sẽ ra
<=>3(x2-6x+9)+6y2+2z2+3y2z2=33
<=>3(x-3)2+6y2+2z2+3y2z2=33
nhận thấy 3(x-3)2;6y2;3y2z2 chia hết cho
=>2z2 chia hết cho 3=>z chia hết cho 3
giả sử trong 4 số đó không số nào =0
=>\(3\left(x-3\right)^2\ge3;6y^2\ge6;2z^2\ge18;3y^2z^2\ge27\Rightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2\ge54\)(vô lí)
với x-3=0
=>x=3
pt trở thành 6y2+2z2+3y2z2=6
<=>(3y2+2)(z2+2)=10
với y=0
=>3(x-3)2+2z2=33 (đến đây thid dễ rồi)
với z=0=>3(x-3)2+6y2=33
=>(x-3)2+2y2=11
Dễ thấy đc nghiệm (0;1;0) và (0;-1;0) rồi nhưng kb còn nghiệm khác hay k