Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: Giai cau a)
x³ - y³ = xy + 8
<=> (x - y)³ + 3xy(x - y) - xy = 8
<=> (x - y)³ + xy(3x - 3y - 1) = 8
<=> (3x - 3y)³ + 27xy(3x - 3y - 1) = 216
<=> (3x - 3y)³ - 1 + 27xy(3x - 3y - 1) = 215
<=> (3x - 3y - 1)[(3x - 3y)² + (3x - 3y) + 1] + 27xy(3x - 3y - 1) = 215
<=> (3x - 3y - 1)[(3x - 3y)² + (3x - 3y) + 1 + 27xy] = 215
<=> (3x - 3y - 1)(9x² + 9y² - 9xy + 3x - 3y + 1) = 215 = 5.43 = 43.5 = (- 5)(- 43) = (- 43)(- 5)
{ 3x - 3y - 1 = 5 (1)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = 43 (2)
Tu (1) => y = x - 2 thay vao (2) khai trien rut gon co x(x - 2) = 0
=> x = 0; x = 2 => y = - 2; y = 0
Truong hop nay he co 2 nghiem nguyen (x;y) = (0; - 2) va (2; 0)
{ 3x - 3y - 1 = 43 (3)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = 5 (4)
{ 3x - 3y - 1 = - 5 (5)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = - 43 (6)
{ 3x - 3y - 1 = - 43 (7)
{ 9x² + 9y² - 9xy + 3x - 3y + 1 = - 5 (8)
Ban tu giai tiep 3 he sau ( chu y chon nghiem nguyen ) roi ket luan
-------------------------------------…
Ban xem vi du sau: Giai pt nghiem nguyen
2x² - 2x - 2y² = - 3
<=> 4x² - 4x - 4y² + 1 = - 5
<=> (2x + 2y - 1)(2x - 2y - 1) = - 5 = - 1.5 = 1.(- 5) = 5.( -1 ) = (- 5).1
{ 2x + 2y - 1 = - 1
{ 2x - 2y - 1 = 5
=> x = 3/2 ; y = - 3/2 ( loai )
{ 2x + 2y - 1 = 1
{ 2x - 2y - 1 = - 5
=> x = - 1/2 ; y = 3/2 ( loai )
{ 2x + 2y - 1 = 5
{ 2x - 2y - 1 = - 1
=> x = 3/2 ; y = 3/2 ( loai )
{ 2x + 2y - 1 = - 5
{ 2x - 2y - 1 = 1
=> x = - 1/2 ; y = - 3/2 ( loai)
KL : Pt khong co nghiem nguyen
---------------
Voi dang phuong trinh nghiem nguyen bac 2 nay minh bay ban mot thu thuat phan h thanh nhan tu de lam, bat ky bai nao cung giai quyet duoc
Vi du : Xet pt : 2x² - 2x + 3 = 2y²
Buoc 1 : Chuyen ta ca cac hang tu co chua an sang mot ve
2x² - 2x - 2y² = - 3
Them vao 2 ve mot so a nao do
2x² - 2x - 2y² + a = a - 3
Xem ve trai la pt bac 2 an so x; tham so y can phan h thanh nhan tu. Muon vay delta phai la so chinh phuong
= 1 - 2(- 2y² + a) = 4y² + 1 - 2a
De la so chinhs phuong chon a = 1/2 => = 4y²
Khi do tam thuc ve trai co 2 nghiem : x = (1 - 2y)/2; x = (1 + 2y)/2
=> x + y - 1/2 = 0 va x - y - 1/2 = 0
Vay tam thuc co the phan h thanh : (x + y - 1/2)(x - y - 1/2) = - 5/2
hay (2x + 2y - 1)(2x - 2y - 1) = - 5
có đúng ko bn
\(y^2\left(y^2-1\right)+2y\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+2y\right)\left(y^2-1\right)-x^2-x=0\)
\(\Leftrightarrow y\left(y+1\right)\left(y-1\right)\left(y+2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)\left(y^2+y-2\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y\right)^2-2\left(y^2+y\right)-x^2-x=0\)
\(\Leftrightarrow\left(y^2+y-1\right)^2-1-x^2-x=0\)
\(\Leftrightarrow\left(2y^2+2y-2\right)^2-\left(2x+1\right)^2-3=0\)
\(\Leftrightarrow\left(2y^2+2y-2x-3\right)\left(2y^2+2y+2x-1\right)=3\)
Pt ước số
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
x² + y² = 3 - xy
<=> (3/4)(4 - y²) = (x + y/2)² ≥ 0 => - 2 ≤ y ≤ 2 => y = 0; ± 1; ± 2;
=> y = 0 => x² = 3 không thoả
=> y = - 1 => x² + 1 = 3 + x => x² - x - 2 = 0 => x = - 1; x = 2
=> y = 1 => x² + 1 = 3 - x => x² + x - 2 = 0 => x = 1; x = - 2
=> y = - 2 => x² + 4 = 3 + 2x => (x - 1)² = 0 => x = 1
=> y = 2 => x² + 4 = 3 - 2x => (x + 1)² = 0 => x = - 1
KL : 6 nghiệm nguyên của pt là:
(x; y) = (- 1; - 1); (2; - 1); (1; 1); (- 2; 1); (1; - 2); (- 1; 2)
Các bn giải theo phương pháp sử dụng đk có nghiệm của phương trình bậc hai giúp mk ạ!
mình có 1 cách khác nữa:
vì y ∈ Z nên \(\dfrac{x^2-x+1}{x^2+x+1}\) ∈ Z
=>x2-x+1⋮x2+x+1=> x2+x+1 -2x ⋮x2+x+1
=>2x⋮x2+x+1 (1)
Xét hiệu (x2+x+1)-2x=(x-\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)>0
=>x2+x+1 > 2x (2)
Từ (1) và (2) kết hợp với 2x và x2+x+1 ∈ Z
=> 2x =0 => x =0 => y=1
Vậy phương trình có nghiệm (x,y) là (0,1)
\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)
Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:
\(ab^2-3a+b+2=0\)
\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)
\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)
\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)
\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)
mà 2 không chính phương
\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)
đến đây bạn tự giải tiếp
Không mất tính tổng quát: g/s: \(x\ge y\).
=> tồn tại số tự nhiên m sao cho: \(x=y+m\)
phương tình ban đầu trở thành:
\(2^{y+m}+2^y=2^{y+m+y}\)
<=> \(2^m+1=2^m.2^y\)
<=> \(\left(2^m\right)\left(2^y-1\right)=1\)
+) m =0 => y =x =1 thử vào thỏa mãn'
+) m > 0
Nếu y < 0 => \(2^y-1< 0\)=> \(1=\left(2^m\right)\left(2^y-1\right)< 0\)
Nếu y = 0 => loại
Nếu y >0 . Có: \(1=2^m\left(2^y-1\right)>2\left(2^y-1\right)\)=> \(2^y-1< \frac{1}{2}\) loại
Vậy pt chỉ có nghiệm : \(x=y=1.\)