\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=16...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Dễ thấy \(x=0\) không là nghiệm của phương trình. Ta có "

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\Leftrightarrow\left(x^2+7x+6\right)\left(x^2+5x+6\right)=168x^2\)

                                                          \(\Leftrightarrow\left(x+\frac{6}{x}+7\right)\left(x+\frac{6}{x}+5\right)=168\)

Đặt \(t=x+\frac{6}{x}\) ta được :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\Leftrightarrow\left(t+7\right)\left(t+5\right)=168\)

                                                          \(\Leftrightarrow t^2+12t-133=0\Leftrightarrow\left[\begin{array}{nghiempt}t=7\\t=-19\end{array}\right.\)

Do vậy :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\Leftrightarrow\begin{cases}x+\frac{6}{x}=7\\x+\frac{6}{x}=-19\end{cases}\)

                                                          \(\Leftrightarrow\begin{cases}x^2-7x+6=0\\x^2+19x+6=0\end{cases}\)

                                                          \(\Leftrightarrow\begin{cases}x=1\\x=6\\x=\frac{-19\pm\sqrt{337}}{2}\end{cases}\)

Vậy phương trình đã cho có tập nghiệm :

\(\left\{1;6;\frac{-19-\sqrt{337}}{2};\frac{-19+\sqrt{337}}{2}\right\}\)

 

 

9 tháng 5 2016

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=168x^2\)

<=>\(\left(x+1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=168x^2\)

<=>\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=168x^2\)(1)

Đặt t=x2+5x+6

PT (1) trở thành: (t+2x)t=168x2

<=>t2+2tx-168x2=0

<=>t2-12tx+14tx-168x2=0

<=>t.(t-12x)+14x.(t-12x)=0

<=>(t-12x)(t+14x)=0

<=>t-12x=0 hoặc t+14x=0

*t-12x=0 (thích giải denta cũng được)

<=>x2-7x+6=0

<=>x2-x-6x+6=0

<=>x.(x-1)-6.(x-1)=0

<=>(x-1)(x-6)=0

<=>x=1 hoặc x=6

*t+14x=0

<=>x2+19x+6=0

Giải denta là vừa tại số lớn lắm tự làm típ ..............

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

6 tháng 5 2016

Phương trình đã cho tương đương với :

\(5^{\left(x+2\right)\left(x+1\right)}+5^{x\left(x+3\right)}=2^{\left(x+1\right)\left(x+5\right)}-6.2^{\left(x+6\right)x}\)

\(\Leftrightarrow5^{x^2+3x+2}+5^{x^2+3x}=2^{x^2+6x+5}-6.2^{x^2+6x}\)

\(\Leftrightarrow26.5^{x^2+3x}=26.2^{x^2+6x}\)

\(\Leftrightarrow5^{x^2+3x}=2^{x^2+6x}\)

\(\Leftrightarrow\left(x^2+3x\right)\log_25=x^2+6x\)

\(\Leftrightarrow x\left[\left(x+3\right)\log_25-\left(x+6\right)\right]=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{6-3\log_25}{\log_25-1}=\log_{\frac{5}{2}}\frac{64}{125}\end{array}\right.\)

18 tháng 4 2016

\(\begin{cases}xy\left(x+1\right)=x^3+y^2+x-y\left(1\right)\\3y\left(2+\sqrt{9x^2+3}\right)+\left(4y+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\left(2\right)\end{cases}\)

Điều kiện xác định : mọi \(x\in Z\)

Ta có : \(xy\left(x+1\right)=x^3+y^2+x-y\Leftrightarrow x^3-x^2y+y^2-xy+x-y=0\)

                                                       \(\Leftrightarrow\left(x-y\right)\left(x^2-y-1\right)=0\Leftrightarrow\begin{cases}y=x\\y=x^2+1\end{cases}\)

Với \(y=x^2+1\) thay vào phương trình (2) ta được :

\(3\left(x^2+1\right)\left(2+\sqrt{9x^2+3}\right)+\left(4x^2+6\right)\left(\sqrt{1+x+x^2}+1\right)=0\)

Giải ra ta có phương trình vô  nghiệm

Với y=x, thay vào phương trình thứ 2, ta được :

\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(\sqrt{1+x+x^2}+1\right)=0\)

\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=-\left(2x+1\right)\left(\sqrt{3+\left(2x+1\right)^2}+2\right)\)

\(\Leftrightarrow3x\left(2+\sqrt{9x^2+3}\right)=\left(-2x-1\right)\left(\sqrt{3+\left(-2x-1\right)^2}+2\right)\)

Xét hàm số \(f\left(t\right)=t\left(\sqrt{t^2+2}+2\right)\)

Ta có : \(f'\left(t\right)=\sqrt{t^2+2}+2+\frac{t^2}{\sqrt{t^2+2}}>0\) suy ra hàm số đồng biến

Từ đó suy ra \(3x=-2x\Leftrightarrow x=-\frac{1}{5}\)

Vậy hệ phương trình có nghiệm \(\left(x,y\right)=\left(-\frac{1}{5};-\frac{1}{5}\right)\)