Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(\sqrt{3}+2\right)sinx+cosx=2sin3x+2sinx\)
\(\Leftrightarrow\sqrt{3}sinx+cosx=2sin3x\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=sin3x\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=sin3x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x+\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow x=...\)
a.
ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)
Chia 2 vế cho cosx:
\(tanx+1=\dfrac{1}{cos^2x}\)
\(\Rightarrow tanx+1=1+tan^2x\)
\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow2sin2x+2sin^2x=1\)
\(\Leftrightarrow2sin2x=1-2sin^2x\)
\(\Leftrightarrow2sin2x=cos2x\)
\(\Rightarrow tan2x=\dfrac{1}{2}\)
\(\Rightarrow2x=arctan\left(\dfrac{1}{2}\right)+k\pi\)
\(\Rightarrow x=\dfrac{1}{2}arctan\left(\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne-\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\dfrac{cosx-2sinx.cosx}{1-2sin^2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\left(loại\right)\\x=-\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
ĐKXĐ : \(sinx\ne1;-\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+2k\pi\\x\ne\dfrac{-\pi}{6}+2k\pi;\dfrac{7\pi}{6}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow x\ne\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\)( k thuộc Z )
P/t đã cho \(\Leftrightarrow\dfrac{cosx-sin2x}{1-2sin^2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)
\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x+\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+2k\pi\\2x+\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+2k\pi\end{matrix}\right.\) ( k thuộc Z )
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+2k\pi\\x=\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\left(L\right)\end{matrix}\right.\)
Vậy ...
\(\Leftrightarrow cos3x+\sqrt{3}sin3x=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow\dfrac{1}{2}cos3x+\dfrac{\sqrt{3}}{2}sin3x=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)
\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{3}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\\3x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{3}sinx+cosx=\sqrt{3}\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Pt \(\Leftrightarrow sinx+\dfrac{\sqrt{3}}{3}cosx=1\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sinx.cos\dfrac{\pi}{6}+cosx.sin\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{6}=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
ĐKXĐ: ...
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=\dfrac{3}{2}\left(1+tan^2x\right)-\sqrt{3}tanx\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=\dfrac{3}{2}\left(tanx-\dfrac{\sqrt{3}}{3}\right)^2+1\)
\(\left\{{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)\le1\\\dfrac{3}{2}\left(tanx-\dfrac{\sqrt{3}}{3}\right)^2+1\ge1\end{matrix}\right.\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)=1\\tanx=\dfrac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
Hình như có nhầm lẫn từ dòng 1 xuống dòng 2 thì phải. Em bấm máy tính ra nghiệm pi/6 mà.
\(\sqrt{2}\left(2cos^2x-3sin2x\right)=4cosx.sin2x+2\left(sinx-cosx\right)\)
\(\Leftrightarrow\left(2\sqrt{2}cos^2x+2cosx\right)-3\sqrt{2}sin2x-4cosx.sin2x-2sinx=0\)
\(\Leftrightarrow2cosx\left(\sqrt{2}cosx+1\right)-6\sqrt{2}sinx.cosx-4cosx^2.sinx-2sinx=0\)
\(\Leftrightarrow2cosx\left(\sqrt{2}cosx+1\right)-2sinx\left(4cos^2x+3\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow2cosx\left(\sqrt{2}cosx+1\right)-2sinx\left(\sqrt{2}cosx+1\right)\left(2\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow\left(2cosx-4\sqrt{2}cosx.sinx-2sinx\right)\left(\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow\left[2\sqrt{2}-2\sqrt{2}\left(cosx-sinx\right)^2+2\left(cosx-sinx\right)\right]\left(\sqrt{2}cosx+1\right)=0\)
Đặt \(t=cosx-sinx\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)
\(pt\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{\sqrt{2}}\\\sqrt{2}t^2-t-\sqrt{2}=0\end{matrix}\right.\)
...
Ta có : \(2cos^2x+2\sqrt{3}sinx.cosx+1=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow3cos^2x+sin^2x+2\sqrt{3}sinxcosx=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)^2=3\left(\sqrt{3}cosx+sinx\right)\)
\(\Leftrightarrow\left(\sqrt{3}cosx+sinx\right)\left(\sqrt{3}cosx+sinx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3}cosx+sinx=0\\\sqrt{3}cos+sinx=3\end{matrix}\right.\)
Thấy : \(-1\le sinx;cosx\le1\Rightarrow\sqrt{3}cosx+sinx\le1+\sqrt{3}< 3\)
Do đó : \(\sqrt{3}cosx+sinx=0\) \(\Leftrightarrow\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx=0\)
\(\Leftrightarrow sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}sinx=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\) ( k thuộc Z )
Vậy ...
Đặt \(\left|sinx-cosx\right|=a\) (\(0\le a\le\sqrt{2}\))
\(\Rightarrow1-2sinx.cosx=a^2\Rightarrow1-sin2x=a^2\Rightarrow sin2x=1-a^2\)
Phương trình trở thành:
\(a+4\left(1-a^2\right)=1\Leftrightarrow-4a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{4}< 9\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|sinx-cosx\right|=1\Leftrightarrow\left|\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\right|=1\)
\(\Leftrightarrow\left|sin\left(x-\frac{\pi}{4}\right)\right|=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin\left(x-\frac{\pi}{4}\right)=\frac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow...\)