\(\left(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

a) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{15}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{7}{15}\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}=\frac{3}{5}x-\frac{7}{15}\)

\(\Leftrightarrow\frac{7}{15}x-\frac{7}{15}-\frac{3}{5}x+\frac{7}{15}=0\)

\(\Leftrightarrow\frac{8}{15}x=0\)

\(\Leftrightarrow x=0\)

7 tháng 1 2017

$\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{103.105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{103}-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{1}{2}.\left(1-\frac{1}{105}\right).\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}.\left(x-1\right)=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow \frac{52}{105}x-\frac{52}{105}=\frac{3}{5}x-\frac{7}{15}\\ \Leftrightarrow x=-\frac{3}{11}$

8 tháng 1 2017

b) Đặt \(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\)

A\(=\frac{1}{100}\left(\frac{100}{1.101}+\frac{100}{2.102}+\frac{1}{3.103}+...+\frac{100}{10.110}\right)\)

A\(=\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)

A\(=\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)Đặt \(B=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{10}{100.110}\)

\(B=\frac{1}{10}\left(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{100.110}\right)\)

\(B=\frac{1}{10}\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)

\(B=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{110}\right)\right]\)\(=\frac{1}{10}\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right]\)\(B=10A\)

\(A.x=10A\)

\(=>x=10\)

15 tháng 1 2020

hello

19 tháng 4 2018

\(A= {1\over1.101}+{1\over2.102}+...+{1\over10.110}= \)

15 tháng 4 2015

cau a),b),c) ban dat mau chung roi khu mau ma lam la duoc ma

1 tháng 7 2015

Tuy học lớp 6 ................. cơ mừ thấy mí bài nỳ dễ quá >.<

13 tháng 7 2018

a, ⇔ x4 - 2x3 + 4x3 - 8x2 + 4x2 - 8x + 3x - 6 = 0

⇔ (x - 2)(x3 + 4x2 + 4x + 3) = 0

⇔ (x - 2)(x3 + 3x2 + x2 + 3x + x + 3) = 0

⇔ (x - 2)(x + 3)(x2 + x + 1) = 0 mà x2 + x + 1 > 0 ∀ x

\(\left\{{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm phương trình S = {2; -3}

6 tháng 1 2019

\(\left(\frac{1}{1.51}+\frac{1}{2.52}+\frac{1}{3.53}+...+\frac{1}{10.60}\right).x=\frac{1}{1.11}+\frac{1}{2.12}+...+\frac{1}{50.60}\)

\(\Leftrightarrow\left(\frac{50}{1.51}+\frac{50}{2.52}+...+\frac{50}{10.60}\right).x=5.\left(\frac{10}{1.11}+\frac{10}{2.12}+...+\frac{10}{50.60}\right)\)

\(\Leftrightarrow\left(1-\frac{1}{51}+\frac{1}{2}-\frac{1}{52}+...+\frac{1}{10}-\frac{1}{60}\right).x=5.\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{50}-\frac{1}{60}\right)\)

\(\Leftrightarrow\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\right].x=5.\left[\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{60}\right)\right]\)

\(\Leftrightarrow x=5\)

13 tháng 4 2018

bằng 5 k mình nhé!